Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Начальные классы / Рабочие программы / Пояснительная записка к программе по математике

Пояснительная записка к программе по математике



Осталось всего 2 дня приёма заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)


  • Начальные классы

Поделитесь материалом с коллегами:

hello_html_m381f35de.gif

Пояснительная записка

Рабочая программа по математике для 2 класса составлена на основании авторской программы «Математика» В. Н. Рудницкой (Математика: программа: 1-4 классы / - М.: Вентана-Граф, 2013. – 128с.: ил.- (Начальная школа XXI века) в соответствии с требованиями федерального государственного образовательного стандарта начального общего образования к результатам освоения младшими школьниками основ начального курса математики, учебного плана лицея, действующих санитарно-эпидемиологических правил и нормативов.

Цели и задачи обучения математике

Обучение математике в начальной школе направлено на достижение следующих целей:

- обеспечение интеллектуального развития младших школьников: формирование основ логико-математического мышления, пространственного воображения, овладение учащимися математической речью для описания математических объектов и процессов окружающего мира в количественном и пространственном отношениях, для обоснования получаемых результатов, решения учебных задач;

- предоставление младшим школьникам основ начальных математических знаний и формирование соответствующих умений: решать учебные и практические задачи; вести поиск информации (фактов, сходств, различий, закономерностей, оснований для упорядочивания и классификации математических объектов); измерять наиболее распространенные в практике величины; умение применять алгоритмы арифметических действий для вычислений; узнавать в окружающих предметах знакомые геометрические фигуры, выполнять несложные геометрические построения;

- реализация воспитательного аспекта обучения: воспитание потребности узнавать новое, расширять свои знания, проявлять интерес к занятиям математикой, стремиться использовать математические знания и умения при изучении других школьных предметов и в повседневной жизни, приобрести привычку доводить начатую работу до конца, получать удовлетворение от правильно и хорошо выполненной работы, уметь обнаруживать и оценивать красоту и изящество математических методов, решений, образов.

Важнейшими задачами обучения являются создание благоприятных условий для полноценного математического развития каждого ученика на уровне, соответствующем его возрастным особенностям и возможностям, и обеспечение необходимой и достаточной математической подготовки для дальнейшего успешного обучения в основной школе.

Математика как учебный предмет вносит заметный вклад в реализацию важнейших целей и задач начального общего образования младших школьников. Овладение учащимися начальных классов основами математического языка для описания разнообразных предметов и явлений окружающего мира, усвоение общего приёма решения задач как универсального действия, умения выстраивать логические цепочки рассуждений, алгоритмы выполняемых действий, использование измерительных и вычислительных умений и навыков создают необходимую базу для успешной организации процесса обучения учащихся в начальной школе.

Общая характеристика курса математики.

Особенность обучения в начальной школе состоит в том, что именно на данной ступени у учащихся начинается формирование элементов учебной деятельности. На основе этой деятельности у ребенка возникают теоретическое сознание и мышление, развиваются соответствующие способности (рефлексия, анализ, мысленное планирование); происходит становление потребности и мотивов учения. С учетом сказанного в данном курсе в основу отбора содержания обучения положены следующие наиболее важные методические принципы: анализ конкретного учебного материала с точки зрения его общеобразовательной ценности и необходимости изучения в начальной школе; возможность широкого применения изучаемого материала на практике; взаимосвязь вводимого материала с ранее изученным; обеспечение преемственности с дошкольной математической подготовкой и содержанием следующей ступени обучения в средней школе; обогащение математического опыта младших школьников за счёт включения в курс дополнительных вопросов, традиционно не изучавшихся в начальной школе.


Основу данного курса составляют пять взаимосвязанных содержательных линий:

  • элементы арифметики;

  • величины и их измерение;

  • логико-математические понятия;

  • алгебраическая пропедевтика;

  • элементы геометрии.

Для каждой из этих линий отобраны основные понятия, вокруг которых развертывается все содержание обучения. Понятийный аппарат включает следующие четыре понятия, вводимые без определений: число, отношение, величина, геометрическая фигура.

В соответствии с требованиями стандарта начального общего образования в современном учебном процессе предусмотрена работа с информацией (представление, анализ и интерпретация данных, чтение диаграмм и пр.). В данном курсе математики этот материал не выделяется в отдельную содержательную линию, а регулярно присутствует при изучении программных вопросов, образующих каждую из вышеназванных линий содержания обучения.

Общее содержание обучения математике представлено в программе следующими разделами:

  • «Число и счет»,

  • «Арифметические действия и их свойства»,

  • «Величины»,«Работа с текстовыми задачами»,

  • «Пространственные отношения. Геометрические фигуры»,

  • «Логико-математическая подготовка»,

  • «Работа с информацией».

Обучение письменным приёмам сложения и вычитания начинается во 2 классе. Овладев этими приемами с двузначными числами, учащиеся легко переносят полученные умения на трехзначные числа (3 класс) и вообще на любые многозначные числа (4 класс). Изучение величин распределено по темам программы таким образом, что формирование соответствующих умений производится в течение продолжительных интервалов времени.

Во втором классе вводится метр и рассматриваются важнейшие соотношения между изученными единицами длины. Понятие площади фигуры — более сложное. Однако его усвоение удается существенно облегчить и при этом добиться прочных знаний и умений благодаря организации большой подготовительной работы. Идея подхода заключается в том, чтобы научить учащихся, используя практические приемы, находить площадь фигуры, пересчитывая клетки, на которые она разбита. Эта работа довольно естественно увязывается с изучением таблицы умножения. Получается двойной выигрыш: дети приобретают необходимый опыт нахождения площади фигуры (в том числе прямоугольника) и в то же время за счет дополнительной тренировки (пересчитывание клеток) быстрее запоминают таблицу умножения.

Этот (первый) этап довольно продолжителен. После того как дети приобретут достаточный практический опыт, начинается второй этап, на котором вводятся единицы площади: квадратный сантиметр, квадратный дециметр и квадратный метр. Теперь площадь фигуры, найденная практическим путем (например, с помощью палетки), выражается в этих единицах. Наконец, на третьем этапе во 2 классе, т. е. раньше, чем это делается традиционно, вводится правило нахождения площади прямоугольника. Такая методика позволяет добиться хороших результатов: с полным пониманием сути вопроса учащиеся осваивают понятие «площадь», не смешивая его с понятием «периметр», введённым ранее.

В курсе созданы условия для организации работы, направленной на подготовку учащихся к освоению в основной школе элементарных алгебраических понятий — переменная, выражение с переменной, уравнение. Эти термины в курсе не вводятся, однако рассматриваются разнообразные выражения, равенства и неравенства, содержащие «окошко», вместо которых подставляются те или иные числа. В соответствии с программой учащиеся овладевают многими важными логико-математическими понятиями.

Важное место в формировании умения работать с информацией принадлежит арифметическим текстовым задачам. Работа над задачами заключается в выработке умения не только их решать, но и преобразовать текст: изменять одно из данных или вопрос, составлять и решать новую задачу с изменёнными данными и пр. Форма предъявления текста задачи может быть разной (текст с пропуском данных, часть данных представлена на рисунке, схеме или в таблице), Нередко перед учащимися ставится задача обнаружения недостаточности информации в тексте и связанной с ней необходимости корректировки этого текста.

В программе четко просматриваются линии развития геометрических представлений учащихся. Дети знакомятся с наиболее распространенными геометрическими фигурами (многоугольник, отрезок, луч и др.)

Описание места учебного предмета в учебном плане

На предмет «Математика» для 2 класса в базисном учебном плане начального общего образования и в учебном плане МОУ «Лицей № 22» г. Воскресенска на 2015-2016 учебный год отводится 136 часа (4 час в неделю; 34 учебных недели).

Темы, попадающие на праздничные дни планируется изучать за счет объединения тем.

Ценностные ориентиры содержания курса математики.

Математика является основой общечеловеческой культуры. Об этом свидетельствует её постоянное и обязательное присутствие практически во всех сферах современного мышления, науки и техники. Поэтому приобщение учащихся к математике как к явлению общечеловеческой культуры существенно повышает её роль в развитии личности младшего школьника.

Содержание курса математики направлено, прежде всего, на интеллектуальное развитие младших школьников: овладение логическими действиями сравнения, анализа, синтеза, обобщения, классификации по родовидовым признакам, установления аналогий и причинно-следственных связей, построения рассуждений, отнесения к известным понятиям, а также реализует следующие цели обучения:

- сформировать у учащихся значимые с точки зрения общего образования арифметические и геометрические представления о числах и отношениях, алгоритмах выполнения арифметических действий, свойствах этих действий, о величинах и их измерении, о геометрических фигурах;

- владение математическим языком, знаково-символическими средствами, установление отношений между математическими объектами служит средством познания окружающего мира, процессов и явлений, происходящих в повседневной практике;

- овладение важнейшими элементами учебной деятельности в процессе реализации содержания курса на уроках математики обеспечивает формирование у учащихся «умения учиться», что оказывает заметное влияние на развитие их познавательных способностей;

- решение математических (в том числе арифметических) текстовых задач

оказывает положительное влияние на эмоционально-волевое сферу личности учащихся, развивает умение преодолевать трудности, настойчивость, волю, умение испытывать удовлетворение от выполненной работы.

Кроме того, важной ценностью содержания обучения является работа с информацией, представленной таблицами, графиками, диаграммами, схемами, базами данных; формирование соответствующих умений на уроках математики оказывает существенную помощь при изучении других школьных предметов.

Тематическое планирование предмета «Математика» по разделам

п/п

Название раздела

Количество скорректированных часов по программе


Сложение и вычитание в пределах 100

8


Луч. Числовой луч

7


Единицы измерения длин

3


Многоугольник

3


Способы сложения и вычитания в пределах 100

20


Периметр

3


Окружность

5


Таблица умножения и деления многозначных чисел

24+59


Площадь фигуры

4

Итого:

136ч




Содержание программы соответствует авторской без внесения изменений.

Содержание курса математики 1-4 классов

Число и счёт.

Счёт предметов. Чтение и запись чисел в пределах класса сотня. Классы и разряды натурального числа. Десятичная система записи чисел. Представление многозначного числа в виде суммы разрядных слагаемых.(уроки №1-8) Сравнение чисел; запись результатов сравнения с использованием знаков >, =,<.

Римская система записи чисел. Сведения из истории математики: как появились числа, чем занимается арифметика.

Универсальные учебные действия:

- пересчитывать предметы; выражать результат натуральным числом;

- сравнивать числа;

- упорядочивать данное множество чисел.

Арифметические действия с числами и их свойства

Сложение, вычитание, умножение и деление и их смысл. Запись арифметических действий с использованием знаков +, -, •, : (уроки № 5-8, 22-41, 50-73, 78-136)

Сложение и вычитание (умножение и деление) как взаимно обратные действия. Названия компонентов арифметических действий (слагаемое, сумма; уменьшаемое, вычитаемое, разность; множитель, произведение; делимое, делитель, частное).(уроки № 50-57, 78-136)

Таблица сложения и соответствующие случаи вычитания.( уроки № 1-8) Таблица умножения и соответствующие случаи деления.(уроки № 50-57, 78-136) Устные и письменные алгоритмы сложения и вычитания.(уроки № 5, 6, 7, 8)

Устные и письменные алгоритмы деления на однозначное. Способы проверки правильности вычислений (с помощью обратного действия, оценка достоверности, прикидка результата, с использованием микрокалькулятора).

Доля числа (половина, треть, четверть, десятая, сотая).

Нахождение одной или нескольких долей числа. Нахождение числа по его доле.

Переместительное и сочетательное свойства сложения и умножения; распределительное свойство умножения относительно сложения (вычитания); сложение и вычитание с 0; умножение и деление с 0 и 1. Обобщение: записи свойств действий с использованием букв. Использование свойств арифметических действий при выполнении вычислений: перестановка и

группировка слагаемых в сумме, множителей в произведении; умножение суммы и разности на число). Числовое выражение. Правила порядка выполнения действий в числовых выражениях, содержащих от 2 арифметических действий, со скобками и без скобок. Вычисление значений выражений. Составление выражений в соответствии с заданными условиями.

Выражения и равенства с буквами. Правила вычисления неизвестных компонентов арифметических действий. Примеры арифметических задач, решаемых составлением равенств,

содержащих букву.

Универсальные учебные действия:

- моделировать ситуацию, иллюстрирующую данное арифметическое действие;

- воспроизводить устные и письменные алгоритмы выполнения четырёх арифметических действий;

- прогнозировать результаты вычислений;

- контролировать свою деятельность: проверять правильность выполнения вычислений изученными способами;

- оценивать правильность предъявленных вычислений;

- сравнивать разные способы вычислений, выбирать из них удобный;

- анализировать структуру числового выражения с целью определения

порядка выполнения содержащихся в нём арифметических действий.

Величины

Длина (уроки №16,17,18), площадь(уроки №74-77), периметр (уроки №42-44), время, цена, стоимость и их единицы. Соотношения между единицами однородных величин. Сведения из истории математики: старинные русские меры длины (вершок, аршин, пядь, маховая и косая сажень, морская миля, верста), массы (пуд, фунт,ведро, бочка). Вычисление периметра многоугольника(уроки № 19,20, 21) периметра и площади прямоугольника (квадрата). Длина ломаной и её вычисление. Измерение длины, массы, времени, площади с указанной точностью. Вычисление одной или нескольких долей значения величины. Вычисление значения величины по известной доле её значения.

Универсальные учебные действия:

- сравнивать значения однородных величин;

- упорядочивать данные значения величины;

- устанавливать зависимость между данными и искомыми величинами при решении разнообразных учебных задач.

Работа с текстовыми задачами

Понятие арифметической задачи. Решение текстовых арифметических задач арифметическим способом. Работа с текстом задачи: выявление известных и неизвестных величин, составление таблиц, схем, диаграмм и других моделей для представления данных условия задачи.

Планирование хода решения задачи. Запись решения и ответа задачи. Задачи, содержащие отношения «больше (меньше) на», «больше (меньше) в»; зависимости между величинами.

Примеры арифметических задач, решаемых разными способами; задач, имеющих несколько решений, не имеющих решения; задач с недостающими и с лишними данными (не использующимися при решении).

Универсальные учебные действия:

- моделировать содержащиеся в тексте задачи зависимости;

- планировать ход решения задачи;

- анализировать текст задачи с целью выбора необходимых арифметических действий для её решения;

- прогнозировать результат решения;

- контролировать свою деятельность: обнаруживать и устранять ошибки логического характера (в ходе решения) и ошибки вычислительного характера;

- выбирать верное решение задачи из нескольких предъявленных решений;

- наблюдать за изменением решения задачи при изменении её условий.

Геометрические понятия

Форма предмета. Понятия: такой же формы, другой формы. Плоские фигуры: точка, линия, отрезок, ломаная, круг; многоугольники и их виды(уроки №19-21). Луч и прямая как бесконечные плоские фигуры(уроки №9-15). Окружность (круг)( уроки №45-49). Изображение плоских фигур с помощью линейки, циркуля и от руки. Угол и его элементы вершина, стороны. Виды углов (прямой, острый, тупой).

Прямоугольник и его определение. Квадрат как прямоугольник. Свойства противоположных сторон и диагоналей прямоугольника. Оси симметрии прямоугольника (квадрата). Пространственные фигуры: прямоугольный параллелепипед (куб), пирамида, цилиндр, конус, шар. Их распознавание на чертежах и на моделях. Взаимное расположение фигур на плоскости (отрезков, лучей, прямых, окружностей) в различных комбинациях. Общие элементы фигур. Осевая симметрия. Пары симметричных точек, отрезков, многоугольников. Примеры фигур, имеющих одну или несколько осей симметрии. Построение симметричных фигур на клетчатой бумаге.

Универсальные учебные действия:

- ориентироваться на плоскости и в пространстве (в том числе различать направления движения);

- различать геометрические фигуры;

- характеризовать взаимное расположение фигур на плоскости;

- конструировать указанную фигуру из частей;

- классифицировать треугольники;

- распознавать пространственные фигуры (прямоугольный параллелепипед, пирамида, цилиндр, конус, шар) на чертежах и на моделях.

Логико-математическая подготовка

Классификация множества предметов по заданному признаку. Определение

оснований классификации. Понятие о высказывании. Примеры истинных и ложных высказываний. Числовые равенства и неравенства как примеры истинных и ложных

высказываний. Составные высказывания, образованные из двух простых высказываний с

помощью логических связок «и»,«или»,«если, то»,«неверно, что» и их истинность. Анализ структуры составного высказывания: выделение в нем простых высказываний. Образование составного высказывания из двух простых высказываний.(уроки №2-136 )

Простейшие доказательства истинности или ложности данных утверждений. Приведение примеров, подтверждающих или опровергающих данное утверждение.

Решение несложных комбинаторных задач и других задач логического характера (в том числе задач, решение которых связано с необходимостью перебора возможных вариантов.(урок № 2-136)

Универсальные учебные действия:

- определять истинность несложных утверждений;

- приводить примеры, подтверждающие или опровергающие данное утверждение;

- конструировать алгоритм решения логической задачи;

- делать выводы на основе анализа предъявленного банка данных;

- конструировать составные высказывания из двух простых высказываний с помощью логических слов-связок и определять их истинность;

- анализировать структуру предъявленного составного высказывания; выделять в нём составляющие его высказывания и делать выводы об истинности или ложности составного высказывания;

- актуализировать свои знания для проведения простейших математических доказательств (в том числе с опорой на изученные определения, законы арифметических действий, свойства геометрических фигур).

Работа с информацией

Сбор и представление информации, связанной со счетом, с измерением;фиксирование и анализ полученной информации.

Таблица. Чтение и заполнение таблиц заданной информацией. Перевод информации из текстовой формы в табличную. Составление таблиц. Графы отношений. Использование графов для решения учебных задач.

Числовой луч. Координата точки. (урок №9-15)Обозначение вида А (5). Координатный угол. Оси координат. Обозначение вида А (2,3).

Конечные последовательности (цепочки) предметов, чисел, фигур, составленные по определенным правилам. Определение правила составления последовательности.

Универсальные учебные действия:

- собирать требуемую информацию из указанных источников; фиксировать результаты разными способами;

- сравнивать и обобщать информацию, представленную в таблицах, на графиках и диаграммах;

- переводить информацию из текстовой формы в табличную.


Планируемые результаты освоения курса математики.


Личностными результатами обучения учащихся являются:

- самостоятельность мышления; умение устанавливать, с какими учебными задачами ученик может самостоятельно успешно справиться;

- готовность и способность к саморазвитию;

- сформированность мотивации к обучению;

- способность характеризовать и оценивать собственные математические знания и умения;

- заинтересованность в расширении и углублении получаемых математических знаний;

- готовность использовать получаемую математическую подготовку в учебной деятельности и при решении практических задач, возникающих в повседневной жизни;

- способность преодолевать трудности, доводить начатую работу до ее завершения;

- способность к самоорганизованности;

- высказывать собственные суждения и давать им обоснование;

- владение коммуникативными умениями с целью реализации возможностей успешного сотрудничества с учителем и учащимися класса (при групповой работе, работе в парах, в коллективном обсуждении математических проблем).


Метапредметными результатами обучения являются:

- владение основными методами познания окружающего мира (наблюдение, сравнение, анализ, синтез, обобщение, моделирование);

- понимание и принятие учебной задачи, поиск и нахождение способов ее решения;

- планирование, контроль и оценка учебных действий; определение наиболее эффективного способа достижения результата;

- выполнение учебных действий в разных формах (практические работы, работа с моделями и др.);

- создание моделей изучаемых объектов с использованием знаково-символических средств;

- понимание причины неуспешной учебной деятельности и способность конструктивно действовать в условиях неуспеха;

- адекватное оценивание результатов своей деятельности;

- активное использование математической речи для решения разнообразных коммуникативных задач;

- готовность слушать собеседника, вести диалог;

- умение работать в информационной среде.


Предметными результатами учащихся являются:

- овладение основами логического и алгоритмического мышления, пространственного воображения и математической речи;

- умение применять полученные математические знания для решения учебно-познавательных и учебно-практических задач, а также использовать эти знания для описания и объяснения различных процессов и явлений окружающего мира, оценки их количественных и пространственных отношений;

- овладение устными и письменными алгоритмами выполнения арифметических действий с целыми неотрицательными числами, умениями вычислять значения числовых выражений, решать текстовые задачи, измерять наиболее распространенные в практике величины, распознавать и изображать простейшие геометрические фигуры;

- умение работать в информационном поле (таблицы, схемы, диаграммы, графики, последовательности, цепочки, совокупности); представлять, анализировать и интерпретировать данные.



Планируемые результаты обучения 2класс


К концу обучения во втором классе ученик научится:

называть:

натуральные числа от 20 до 100 в прямом и в обратном порядке, следующее (предыдущее) при счете число;

число, большее или меньшее данного числа в несколько раз;

единицы длины, площади;

одну или несколько долей данного числа и числа по его доле;

компоненты арифметических действий (слагаемое, сумма, уменьшаемое, вычитаемое, разность, множитель, произведение, делимое, делитель, частное);

геометрическую фигуру (многоугольник, угол, прямоугольник, квадрат, окружность);

сравнивать:

числа в пределах 100;

числа в кратном отношении (во сколько раз одно число больше или меньше другого);

длины отрезков;

различать:

отношения «больше в» и «больше на», «меньше в» и «меньше на»;

компоненты арифметических действий;

числовое выражение и его значение;

российские монеты, купюры разных достоинств;

прямые и непрямые углы;

периметр и площадь прямоугольника;

окружность и круг;

читать:

числа в пределах 100, записанные цифрами;

записи вида 5 · 2 = 10, 12 : 4 = 3;

воспроизводить:

результаты табличных случаев умножения однозначных чисел и соответствующих случаев деления;

соотношения между единицами длины: 1 м = 100 см, 1 м = 10 дм.

приводить примеры:

однозначных и двузначных чисел;

числовых выражений;

моделировать:

десятичный состав двузначного числа;

алгоритмы сложения и вычитания двузначных чисел;

ситуацию, представленную в тексте арифметической задачи, в виде схемы, рисунка;

распознавать:

геометрические фигуры (многоугольники, окружность, прямоугольник, угол);

упорядочивать:

числа в пределах 100 в порядке увеличения или уменьшения;

характеризовать:

числовое выражение (название, как составлено);

многоугольник (название, число углов, сторон, вершин);

анализировать:

текст учебной задачи с целью поиска алгоритма ее решения;

готовые решения задач с целью выбора верного решения, рационального способа решения;

классифицировать:

углы (прямые, непрямые);

числа в пределах 100 (однозначные, двузначные);

конструировать:

тексты несложных арифметических задач;

алгоритм решения составной арифметической задачи;

контролировать:

свою деятельность (находить и исправлять ошибки);

оценивать:

готовое решение учебной задачи (верно, неверно);

решать учебные и практические задачи:

записывать цифрами двузначные числа;

решать составные арифметические задачи в два действия в различных комбинациях;

вычислять сумму и разность чисел в пределах 100, используя изученные устные и письменные приемы вычислений;

вычислять значения простых и составных числовых выражений;

вычислять периметр и площадь прямоугольника (квадрата);

строить окружность с помощью циркуля;

выбирать из таблицы необходимую информацию для решения учебной задачи;

заполнять таблицы, имея некоторый банк данных.


К концу обучения во втором классе ученик может научиться:

формулировать:

свойства умножения и деления;

определения прямоугольника и квадрата;

свойства прямоугольника (квадрата);

называть:

вершины и стороны угла, обозначенные латинскими буквами;

элементы многоугольника (вершины, стороны, углы);

центр и радиус окружности;

координаты точек, отмеченных на числовом луче;

читать:

обозначения луча, угла, многоугольника;

различать:

луч и отрезок

характеризовать:

расположение чисел на числовом луче;

взаимное расположение фигур на плоскости (пересекаются, не пересекаются, имеют общую точку (общие точки);

решать учебные и практические задачи:

выбирать единицу длины при выполнении измерений;

обосновывать выбор арифметических действий для решения задач;

указывать на рисунке все оси симметрии прямоугольника (квадрата),

изображать на бумаге многоугольник с помощью линейки или от руки;

составлять несложные числовые выражения;

выполнять несложные устные вычисления в пределах 100.


Описание материально-технического обеспечения образовательного процесса.

  • Материально-техническое обеспечение образовательного процесса по предмету «Математика»

  • Рудницкая В.Н. Программа четырёхлетней начальной школы по математике:

  • «Начальная школа XXI века» - М.: Вентана-Граф, 2013

  • Рудницкая В.Н., Кочурова Е.Э.,

  • Рудницкая В.Н., Юдачёва Т.В. Математика: 2 класс: учебник для учащихся общеобразовательных учреждений: в 2 ч. – М.: Вентана – Граф, 2013

  • Математика: 2 класс: рабочая тетрадь №1,2 для учащихся общеобразовательных учреждений. – М.: Вентана –Граф, 201?

  • Математика: 2 класс: методика обучения. – М.: Вентана – Граф, 201? Рудницкая В.Н., Юдачёва Т.В.

  • Рудницкая В.Н., Юдачёва Т.В. Математика в начальной школе: проверочные и контрольные работы. – М.: Вентана - Граф, 201?

Технические средства обучения и оборудование

  • Компьютер.

  • DVD – проектор.

  • Измерительные приборы: весы, часы.

  • Демонстрационные инструменты: линейка, угольник, циркуль.

  • Наборы предметных картинок.

  • Набор пространственных геометрических фигур: куб, шар, конус, цилиндр, разные виды многогранников (пирамиды, прямоугольный параллелепипед (куб).

  • Индивидуальные пособия и инструменты: ученическая линейка со шкалой

  • от 0 до 20, чертёжный угольник, циркуль, палетка.

  • Компьютерные и информационно-коммуникативные средства обученияТехнические средства обучения и оборудование

  • Компьютер.

  • DVD – проектор.

  • Измерительные приборы: весы, часы.

  • Демонстрационные инструменты: линейка, угольник, циркуль.

  • Наборы предметных картинок.

  • Набор пространственных геометрических фигур: куб, шар, конус, цилиндр, разные виды многогранников (пирамиды, прямоугольный параллелепипед (куб).

  • Индивидуальные пособия и инструменты: ученическая линейка со шкалой

  • от 0 до 20, чертёжный угольник, циркуль, палетка.

  • Компьютерные и информационно-коммуникативные средства обучения



Согласовано

Заместитель директора по УВР

________________( Базюкина Е.Б.)

«______» __________ 2015 г.



11




57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)


Автор
Дата добавления 27.09.2015
Раздел Начальные классы
Подраздел Рабочие программы
Просмотров130
Номер материала ДВ-015060
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх