1713811
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
Добавить материал и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
ИнфоурокАлгебраРабочие программыРабочая программа по алгебре 9 класс к учебнику А.Г. Мордкович ФГОС ООО

Рабочая программа по алгебре 9 класс к учебнику А.Г. Мордкович ФГОС ООО

библиотека
материалов

Пояснительная записка

Рабочая программа по алгебре для 9 класса разработана на основе:

  1. Федерального Закона «Об образовании в Российской Федерации» № 273 от 29.12.2012 г.;

  2. Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17 декабря 2010 года № 1897;

  3. Примерной программы по учебному предмету. Математика. 5-9 классы. – 3-е изд., перераб. – М.: Просвещение, 2011. – 64 с. – (Стандарты второго поколения);

  4. Программы. Математика.5-6 классы. Алгебра. 7-9 классы. Алгебра и начала анализа. 10-11 классы /авт.-сост. И.И. Зубарева, А.Г. Мордкович.-М.: Мнемозина, 2014.-64с.

  5. Санитарно-эпидемиологических требований к условиям и организации обучения в общеобразовательных учреждениях СанПиН 2.4.2. 2821-10 (утверждены постановлением Главного государственного санитарного врача РФ от 29.12.2010г. № 189) с изменениями от 24.11.2015 года, зарегистрированными в министерстве юстиции Российской Федерации от 18 декабря 2015 года;

  6. Основной образовательной программы основного общего образования МБОУ «Луховицкая средняя общеобразовательная школа № 1»;

  7. Годового учебного календарного графика на 2017 – 2018 учебный год.

  8. Учебного плана МБОУ «Луховицкая средняя общеобразовательная школа №1»


Программа ориентирована на использование УМК А.Г. Мордкович:

  1. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных организаций / А.Г. Мордкович. – 19-е изд., стер. – М.: Мнемозина, 2014. – 175 с.

  2. Алгебра. 8 класс. В 2 ч. Ч.2. Задачник для учащихся общеобразовательных организаций / А.Г. Мордкович. – 19-е изд., стер. – М.: Мнемозина, 2014. – 271 с.

  3. А. Г. Мордковича «Алгебра 7–9 классы «Методическое пособие для учителя», М., Мнемозина 2011 г.

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:

I В направлении личностного развития:

  • формирование представлений о математике, как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и математических способностей.


II В метапредметном направлении:

  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.


III В предметном направлении:

овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.


Задачи:

  • овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

  • способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

  • формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;

  • воспитывать культуру личности, отношение к математике как части общечеловеческой культуры, играющей особую роль в общественном развитии.

В учебном плане МБОУ «Луховицкая средняя общеобразовательная школа № 1» алгебра входит в предметную область «Математика и информатика» на её изучение в 9 классе отводится всего 136 часов по 4 часа в неделю.


ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА


Личностными результатами освоения выпускниками основной школы программы по алгебре являются:

умение ясно, точно, грамотно излагать свои мысли в устной и письменной форме, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

креативность мышления, инициатива, находчивость, активность при решении математических задач;

умение контролировать процесс и результат учебной математической деятельности;

способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.


Метапредметными результатами освоения выпускниками основной школы программы по алгебре являются:

умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы и др.) для иллюстрации, интерпретации, аргументации;

умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

первоначальные представления об идеях и методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов.


Предметными результатами освоения выпускниками основной школы программы по алгебре являются:

Предметная область «Арифметика»

переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и обыкновенную - -в виде десятичной, записывать большие и малые числа с использованием целых степеней десятки;

выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа, находить в несложных случаях значения степеней с целыми показателями, находить значения числовых выражений;

округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и избытком, выполнять оценку числовых

выражений;

пользоваться основными единицами длины, массы, времени, скорости, площади, объема, выражать более крупные единицы через более мелкие и наоборот;

решать текстовые задачи, включая задачи, связанные с отношением и пропорциональностью величин, с дробями и процентами.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов,

калькулятора, компьютера;

устной прикидки и оценки результата вычислений, проверки результата вычисления с использованием различных приёмов;

интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов

и явлений.

Предметная область «Алгебра»

Составлять буквенные выражения и формулы по условию задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое, выражать из формул одну переменную через остальные;

выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями, выполнять разложение многочленов на множители, выполнять тождественное преобразования рациональных выражений;

решать линейные и квадратные неравенства, системы двух линейных уравнений и неравенств с двумя переменными;

решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений исходя из формулировки задачи;

вычислять любой член арифметической и геометрической прогрессии, суммы n- членов прогрессии;

определять координаты точки плоскости, строить точки с заданными координатами.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами, нахождения нужной формулы в справочниках материалах;

моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций.


Предметная область «Элементы логики, комбинаторики, статистики и теории вероятностей»

Проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

извлекать информацию, представленную в таблицах, диаграммах, графиках, составлять таблицы, строить диаграммы и графики;

решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;

вычислять средние значения результатов измерений;

находить частоту события, используя собственные наблюдения и готовые статистические данные;

находить вероятности случайных событий в простейших случаях.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

выстраивания аргументации при доказательстве и в диалоге;

распознавания логически некорректных рассуждений;

записи математических утверждений, доказательств;

анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

решение практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

решение учебных и практических задач, требующих систематического перебора вариантов;

сравнение шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

понимания статистических утверждений.

1. В направлении личностного развития:

умение ясно, точно, грамотно излагать свои мысли в устной и письменной форме, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

креативность мышления, инициатива, находчивость, активность при решении математических задач;

умение контролировать процесс и результат учебной математической деятельности;

способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

2. В метапредметном направлении:

умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

первоначальные представления об идеях и методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов.

3. В предметном направлении:

предметным результатом изучения курса является сформированность следующих умений.

Предметная область «Арифметика»

Переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и обыкновенную – в виде десятичной, записывать большие и малые числа с использованием целых степеней десятки;

выполнять арифметические действия с рациональными числами, сравнивать рациональные

и действительные числа, находить в несложных случаях значения степеней с целыми показателями, находить значения числовых выражений;

округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и избытком, выполнять оценку числовых выражений;

пользоваться основными единицами длины, массы, времени, скорости, площади, объема, выражать более крупные единицы через более мелкие и наоборот;

решать текстовые задачи, включая задачи, связанные с отношением и пропорциональностью величин, с дробями и процентами.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

устной прикидки и оценки результата вычислений, проверки результата вычисления с использованием различных приемов;

интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Предметная область «Алгебра»

  • Составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое, выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями, выполнять разложение на множители, выполнять тождественные преобразования рациональных выражений;

  • решать линейные уравнения, системы двух линейных уравнений с двумя переменными;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами, нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследованиями несложных практических ситуаций.

Предметная область «Элементы логики, комбинаторики, статистики и теории вероятностей»

  • Проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, на графиках, составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путём систематического перебора возможных вариантов и с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве и в диалоге;

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объёмов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.



СОДЕРЖАНИЕ ПРОГРАММЫ

Повторение курса 7-8 классов (10 часов).

Раздел 1. Неравенства и системы неравенств (20 часов).

Линейное и квадратное неравенство с одной переменной, частное и общее решение, равносильность, равносильные преобразования. Рациональные неравенства с одной переменной, метод интервалов, кривая знаков, нестрогие и строгие неравенства. Элемент множества, подмножество данного множества, пустое множество. Пересечение и объединение множеств. Системы линейных неравенств, частное и общее решение системы неравенств.

Раздел 2. Системы уравнений (18 часов).

Рациональное уравнение с двумя переменными, решение уравнения с двумя переменными, равносильные уравнения, равносильные преобразования. График уравнения, система уравнений с двумя переменными, решение системы уравнений с двумя переменными. Метод подстановки, метод алгебраического сложения, метод введения новых переменных, графический метод, равносильные системы уравнений.

Раздел 3. Числовые функции (28 часов).

Функция, область определение и множество значений функции. Аналитический, графический, табличный, словесный способы задания функции. График функции. Монотонность (возрастание и убывание) функции, ограниченность функции снизу и сверху, наименьшее и наибольшее значения функции, непрерывная функция, выпуклая вверх или вниз. Элементарные функции. Четная и нечетная функции и их графики. Степенные функции с натуральным показателем, их свойства и графики. Свойства и графики степенных функций с четным и нечетным показателями, с отрицательным целым показателем.

Раздел 4. Прогрессии (18 часов).

Числовая последовательность. Способы задания числовой последовательности. Свойства числовых последовательностей, монотонная последовательность, возрастающая последовательность, убывающая последовательность. Арифметическая прогрессия, разность, возрастающая прогрессия, конечная прогрессия, формула n-го члена арифметической прогрессии, формула суммы членов конечной арифметической прогрессии, характеристическое свойство арифметической прогрессии. Геометрическая прогрессия, знаменатель прогрессии, возрастающая прогрессия, конечная прогрессия, формула n-го члена геометрической прогрессии, формула суммы членов конечной геометрической прогрессии, характеристическое свойство геометрической прогрессии.

Раздел 5. Элементы комбинаторики, статистики и теории вероятностей (16 часов).

Методы решения простейших комбинаторных задач (перебор вариантов, построение дерева вариантов, правило умножения). Факториал. Общий ряд данных и ряд данных конкретного измерения, варианта ряда данных, её кратность, частота и процентная частота, сгруппированный ряд данных, многоугольники распределения. Объем, размах, мода, среднее значение. Случайные события: достоверное и невозможное события, несовместные события, событие, противоположное данному событию, сумма двух случайных событий. Классическая вероятностная схема. Классическое определение вероятности.

повторение (26 часо ).

Основная цель:

  • обобщение и систематизация знаний по основным темам курса алгебры за 9 класс;

  • подготовка к основному государственному экзамену;

  • формирование понимания возможности использования приобретенных знаний и умений в практической деятельности и повседневной жизни.

Выражения и их преобразования. Буквенные выражения. Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразования выражений. Свойства степеней с целым показателем. Многочлены. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения. Разложение многочлена на множители. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Многочлены с одной переменной. Степень многочлена. Корень многочлена. Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями. Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычислениях.

Уравнения. Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Решение рациональных уравнений. Решение уравнений высших степеней; методы замены переменной, разложения на множители. Уравнение с двумя переменными; решение уравнения с двумя переменными.

Системы уравнений. Решение системы уравнений. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Решение нелинейных систем. Решения уравнений в целых числах.

Неравенства. Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Решение дробно-линейных неравенств. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.

Функции. Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций. Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Линейная функция, ее график, геометрический смысл коэффициентов. Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Степенные функции с натуральным показателем, их графики. Графики функций: корень квадратный, корень кубический, модуль. Использование графиков функций для решения уравнений и систем. Примеры графических зависимостей, отражающих реальные процессы: колебание, показательный рост.

Числовые функции, описывающие эти процессы. Параллельный перенос графиков вдоль осей координат и симметрия относительно осей.

Координаты и графики. Изображение чисел очками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой. Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке. Графическая интерпретация уравнений с двумя переменными и их систем, неравенств с двумя переменными и их систем.

Арифметическая и геометрическая прогрессии. Понятие числовой последовательности. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий. Сложные проценты.

Решение текстовых задач алгебраическим способом. Переход от словесной формулировки соотношений между величинами к алгебраической.

Элементы логики, комбинаторики, статистики и теории вероятностей.

Определения, доказательства, аксиомы и теоремы; следствия. Контрпример. Доказательство от противного. Прямая и обратная теоремы. Множество. Элемент множества, подмножество. Объединение и пересечение множеств. Диаграммы Эйлера. Примеры решения комбинаторных задач: перебор вариантов, правило умножения. Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результаты измерений. Понятие о статистическом выводе на основе выборки. Понятие и примеры случайных событий. Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.


Система оценивания обучающихся по математике

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

  • Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся по математике.

  • Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

  • Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

  • Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

  • Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

  • Отметка «1» ставится, если:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.


  • Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

  • незнание наименований единиц измерения;

  • неумение выделить в ответе главное;

  • неумение применять знания, алгоритмы для решения задач;

  • неумение делать выводы и обобщения;

  • неумение читать и строить графики;

  • неумение пользоваться первоисточниками, учебником и справочниками;

  • потеря корня или сохранение постороннего корня;

  • отбрасывание без объяснений одного из них;

  • равнозначные им ошибки;

  • вычислительные ошибки, если они не являются опиской;

  • логические ошибки.

3.2. К негрубым ошибкам следует отнести:

  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

  • неточность графика;

  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

  • нерациональные методы работы со справочной и другой литературой;

  • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

  • нерациональные приемы вычислений и преобразований;

  • небрежное выполнение записей, чертежей, схем, графиков.


ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

8

































Материально-техническое обеспечение программы


  1. Методические и учебные пособия

  • Алгебра. 9 класс. Контрольные работы для учащихся общеобразоват. учрежд./ Л.А.Александрова; под ред. А.Г.Мордковича. – М.: Мнемозина, 2017. – 39 с.

  • Алгебра. Тесты для промежуточной аттестации. 7-9 класс./ Под ред. Ф.Ф.Лысенко. – Ростов-на-Дону: Легион-М, 2009. – 224 с.

  • Мордкович А.Г. Алгебра. 9 класс: методическое пособие для учителя. – М.: Мнемозина, 2008. – 64 с.

  • Мордкович А.Г. Алгебра – 9. Часть 1, учебник. М.: Мнемозина, 2010.

  • Мордкович А.Г., Мишустина Т.Н., Тульчинская Е.Е. Алгебра – 8. Часть 2, задачник. М.: Мнемозина, 2014.

  • Мордкович А.Г., Тульчинская Е.Е. Алгебра. 7-9 классы. Тесты для учащихся общеобразовательных учреждений. – М.: Мнемозина, 2011. – 119 с.

  • Попов М.А. Контрольные и самостоятельные работы по алгебре: 8 класс: к учебнику А.Г.Мордковича и др. «Алгебра. 9 класс».- М.: Издательство «Экзамен», 2014. – 63 с.

  • Программы. Математика. 5-6 кл. Алгебра. 7-9 кл. Алгебра и начала математического анализа. 10-11 кл./авт.-сост. И.И. Зубарева, А.Г. Мордкович. – М.: Мнемозина, 2014. – 63 с.

  1. Оборудование и приборы

  • Аудиторная доска с магнитной поверхностью и набором приспособлений для крепления таблиц.

  • Комплект инструментов классных: линейка, угольник (300, 600), угольник (450, 450), циркуль.

  • ПК


  1. Дидактический материал

  • Карточки для проведения самостоятельных работ по всем темам курса.

  • Карточки для проведения контрольных работ.

  • Карточки для индивидуального опроса учащихся по всем темам курса.

  • Тесты.


  1. Интернет-ресурсы

http://urokimatematiki.ru

http://intergu.ru/

http://www.openclass.ru/

http://festival.1september.ru/articles/subjects/1

http://www.uchportal.ru/load/23

http://easyen.ru/

http://karmanform.ucoz.ru

http://polyakova.ucoz.ru/

http://le-savchen.ucoz.ru/







ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

ОСВОЕНИЯ СОДЕРЖАНИЯ КУРСА

Общеучебные умения, навыки и способы деятельности в 8 классе

В ходе преподавания математики в основной школе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

  • выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале;

  • выполнения расчётов практического характера;

  • использование математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

  • проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

  • самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников;

  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического);

  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В результате изучения алгебры ученик должен

Требования к уровню подготовки учащихся 8 классов:

должны знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности; вероятностный характер различных процессов окружающего мира;

должны уметь:

  • выполнять арифметические действия, сочетая устные и письменные приемы; находить значения корня натуральной степени, степени с рациональным показателем, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратов корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные уравнения;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по её аргументу; находить значения аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

описывать свойства изученных функций, строить их графики;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путём систематического перебора возможных вариантов и с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

находить вероятности случайных событий в простейших случаях.

владеть компетенциями: познавательной, коммуникативной, информационной и рефлексивной.

решать следующие жизненно практические задачи:

  • самостоятельно приобретать и применять знания в различных ситуациях, работать в группах;

  • аргументировать и отстаивать свою точку зрения;

  • уметь слушать других, извлекать учебную информацию на основе сопоставительного анализа

объектов;

  • пользоваться предметным указателем энциклопедий и справочников для нахождения

информации;

  • самостоятельно действовать в ситуации неопределённости при решении актуальных для них

проблем.

Универсальные учебные действия

В соответствии с требованиями Стандарта второго поколения система планируемых результатов – личностных, метапредметных и предметных – устанавливает и описывает классы учебно-познавательных и учебно-практических задач, которые осваивают учащиеся в ходе обучения, особо выделяя среди них те, которые выносятся на итоговую оценку. Успешное выполнение этих задач требует от учащихся овладения системой универсальных учебных действий (УУД), специфических для данного учебного предмета, служащим основой для последующего обучения и даёт возможность обучающимся достичь следующих результатов развития:

в личностном направлении:

1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

4) креативность мышления, инициатива, находчивость, активность при решении математических задач;

5) умение контролировать процесс и результат учебной математической деятельности;
6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

в метапредметном направлении:

1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

в предметном направлении:

  1. овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

  2. создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Универсальные учебные действия

Личностные

Приоритетное внимание уделяется формированию:

• выраженной устойчивой учебно-познавательной мотивации и интереса к учению;

• готовности к самообразованию и самовоспитанию;

• адекватной позитивной самооценки.

Регулятивные

Обучающийся получит возможность научиться:

• самостоятельно ставить новые учебные цели и задачи;

• при планировании достижения целей самостоятельно, полно и адекватно учитывать условия и средства их достижения;

• выделять альтернативные способы достижения цели и выбирать наиболее эффективный способ;

• основам саморегуляции в учебной и познавательной деятельности в форме осознанного управления своим поведением и деятельностью, направленной на достижение поставленных целей;

• осуществлять познавательную рефлексию в отношении действий по решению учебных и познавательных задач;

• адекватно оценивать объективную трудность как меру фактического или предполагаемого расхода ресурсов на решение задачи;

• адекватно оценивать свои возможности достижения цели определённой сложности в различных сферах самостоятельной деятельности;

• основам саморегуляции эмоциональных состояний;

• прилагать волевые усилия и преодолевать трудности и препятствия на пути достижения целей.

Коммуникативные

Обучающийся получит возможность научиться:

• учитывать и координировать отличные от собственной позиции других людей в сотрудничестве;

• учитывать разные мнения и интересы и обосновывать собственную позицию;

• понимать относительность мнений и подходов к решению проблемы;

• продуктивно разрешать конфликты на основе учёта интересов и позиций всех участников, поиска и оценки альтернативных способов разрешения конфликтов; договариваться и приходить к общему решению в совместной деятельности;

• брать на себя инициативу в организации совместного действия (деловое лидерство);

• оказывать поддержку и содействие тем, от кого зависит достижение цели в совместной деятельности;

• осуществлять коммуникативную рефлексию как осознание оснований собственных действий и действий партнёра;

• в процессе коммуникации достаточно точно, последовательно и полно передавать партнёру необходимую информацию как ориентир для построения действия;

• вступать в диалог, а также участвовать в коллективном обсуждении проблем, участвовать в дискуссии и аргументировать свою позицию, владеть монологической и диалогической формами речи;

• следовать морально-этическим и психологическим принципам общения и сотрудничества на основе уважительного отношения к партнёрам, внимания к личности другого, адекватного межличностного восприятия, готовности адекватно реагировать на нужды других, в частности оказывать помощь и эмоциональную поддержку партнёрам в процессе достижения общей цели совместной деятельности;

• устраивать эффективные групповые обсуждения и обеспечивать обмен знаниями между членами группы для принятия эффективных совместных решений;

• в совместной деятельности чётко формулировать цели группы и позволять её участникам проявлять собственную энергию для достижения этих целей.

Познавательные

Обучающийся получит возможность научиться:

• ставить проблему, аргументировать её актуальность;

• самостоятельно проводить исследование на основе применения методов наблюдения и эксперимента;

• выдвигать гипотезы о связях и закономерностях событий, процессов, объектов;

• организовывать исследование с целью проверки гипотез;

• делать умозаключения (индуктивное и по аналогии) и выводы на основе аргументации.



Курс профессиональной переподготовки
Учитель математики
Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:
также Вы можете выбрать тип материала:
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону N273-ФЗ «Об образовании в Российской Федерации» педагогическая деятельность требует от педагога наличия системы специальных знаний в области обучения и воспитания детей с ОВЗ. Поэтому для всех педагогов является актуальным повышение квалификации по этому направлению!

Дистанционный курс «Обучающиеся с ОВЗ: Особенности организации учебной деятельности в соответствии с ФГОС» от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (72 часа).

Подать заявку на курс

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.