Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Пояснительная записка по математике 6 класс.
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Пояснительная записка по математике 6 класс.

библиотека
материалов

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа составлена на основе авторской программы, разработанной в соответствии с требованиями Федерального компонента государственного образовательного стандарта основного общего образования по математике авторов: С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин – М.: Просвещение 2012, и авторской программы Е.Ю. Булгаковой- Волгоград: Учитель , 2012.

Рабочая программа составлена с учетом следующего учебно-методического комплекта:

  1. Математика.6 класс: учеб. для общеобразоват. учреждений / С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В. Шевкин – М.: Просвещение, 2013.

  2. Математика: Дидакт. материалы для 6 кл./ М.К.Потапов, А.В. Шевкин. – М.: Просвещение, 2013.

  3. Математика. Рабочая тетрадь .6 класс /М.К.Потапов, А.В. Шевкин.-M.: Просвещение, 2013.

  4. Математика 6 класс: Тематические тесты/П.В. Чулков, Е.Ф. Шершнев, О.Ф. Зарапина – М.: Просвещение, 2012.

  5. Шарыгин И.Ф. А.В. Шевкин Задачи на смекалку 5-6 классы. – М.: Просвещение, 2010.


Количество часов по плану: всего – 210 ч, в неделю - 6 ч;

контрольные работы - 9 ч.

РАСПРЕДЕЛЕНИЕ КУРСА ПО ТЕМАМ.

п/п.

Наименование разделов и тем

Всего часов

Повторение курса математики 5 класса

4

Отношения, пропорции, проценты

30

Целые числа

35

Рациональные числа

40

Десятичные дроби

39

Обыкновенные и десятичные дроби

26

Повторение

16

8.

Решение занимательных задач

10

9.

Резерв

10


Итого

210

Промежуточная аттестация проводится в форме письменных работ, математических диктантов, тестов, взаимоконтроля.

Основой целеполагания является обновление требований к уровню подготовки школьников в системе естественно-математического образования, отражающее важнейшую особенность педагогической концепции государственного стандарта - перехода от суммы «предметных результатов» к «метапредметным результатам». Такие результаты представляют собой обобщенные способы деятельности, которые отражают специфику не отдельных предметов, а ступеней общего образования.

Дидактическая модель обучения и педагогические средства отражают модернизацию основ учебного процесса, их переориентацию на достижение конкретных результатов в виде сформированных умений и навыков учащихся, обобщенных способов деятельности. Формирование целостных представлений о математике будет осуществляться в ходе творческой деятельности учащихся, их мотивированности к самостоятельной учебной работе. Это предполагает все более широкое использование нетрадиционных форм уроков, в том числе методики деловых и ролевых игр, проблемных дискуссий, межпредметных интегрированных уроков и т.д.

На ступени основной школы задачи учебных занятий определены как закрепление умений разделять процессы на этапы, звенья, выделять характерные причинно-следственные связи, определять структуру объекта познания, значимые функциональные связи и отношения между частями целого, сравнивать, сопоставлять, классифицировать, ранжировать объекты по одному или нескольким предложенным основаниям, критериям. Принципиальное значение в рамках курса приобретает умение различать факты, мнения, доказательства, гипотезы, аксиомы.

При выполнении творческих работ формируется умение определять адекватные способы решения задачи на основе заданных алгоритмов, комбинировать известные алгоритмы деятельности в ситуациях, не предполагающих стандартного применения одного из них, мотивированно отказываться от образца деятельности, искать оригинальные решения.

Учащиеся должны приобрести умения по формированию собственного алгоритма решения познавательных задач, формулировать проблему и цели своей работы, определять адекватные способы и методы решения задачи, прогнозировать ожидаемый результат и сопоставлять его с собственными математическими знаниями. Учащиеся должны научиться представлять результаты индивидуальной и групповой деятельности в формах конспекта, реферата, рецензии.

Реализация календарно-тематического плана обеспечивает освоение универсальных учебных действий:

  • создание условий для развития умений логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки, ясно, точно и грамотно выражать свои мысли в устной и письменной речи;

  • формирование умений использовать различные языки математики, свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства, интегрирования в личный новую, в том числе самостоятельно полученную информацию;

  • создание условий для плодотворного участия в работе группы; умений самостоятельно и мотивированно организовывать свою деятельность, использовать приобретенные знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств тел; вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

На уроках учащиеся могут более уверенно овладеть монологической и диалогической речью, умением вступать в речевое общение, участвовать в диалоге (понимать точку зрения собеседника, признавать право на иное мнение), приводить примеры, подбирать аргументы, перефразировать мысль, формулировать выводы.

Для решения познавательных и коммуникативных задач учащимся предлагается использовать различные источники информации, включая энциклопедии, словари, интернет-ресурсы и другие базы данных, в соответствии с коммуникативной задачей, сферой и ситуацией общения осознанно выбирать выразительные средства языка и знаковые системы (текст, таблица, схема, аудиовизуальный ряд и др.).

Учащиеся должны уметь развернуто обосновывать суждения, давать определения, приводить доказательства (в том числе от противного), объяснять изученные положения на самостоятельно подобранных примерах, владеть основными видами публичных выступлений (высказывание, монолог, дискуссия, полемика), следовать этическим нормам и правилам ведения диалога, диспута. Предполагается простейшее использование учащимися мультимедийных ресурсов и компьютерных технологий для обработки, передачи, систематизации информации, создания баз данных, презентации результатов познавательной и практической деятельности.

С учетом возрастных особенностей классов выстроена система учебных занятий (уроков), спроектированы цели, задачи, ожидаемые результаты обучения (планируемые результаты). Требования к результатам обучения конкретизированы, даны в деятельной формулировке и последовательности их изложения. Конкретно сформулированные требования позволяют спланировать виды учебной деятельности, что обеспечивает усвоение учебного материала на уровне требований государственного стандарта. В планировании приведены примерные измерители достижения требований к уровню подготовки. Планируется использование новых педагогических технологий в преподавании предмета.

В ходе освоения содержания курса учащиеся получают возможность:

  • развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их при решении математических и нематематических задач;

  • изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа функциональных зависимостей;

  • развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

  • получить представление о статистических закономерностях в реальном и мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • развить логическое мышление и речь – умение логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Согласно Федеральному базисному учебному плану данная рабочая программа рассчитана на 6 часов в неделю, 5 из которых взяты из базовой части учебного плана и 1 час из компонента образовательного учреждения, выделен на изучение тем учебника из дополнений к каждой главе, с учетом места предмета в школьном образовательном цикле.

СОДЕРЖАНИЕ МАТЕРИАЛА

  1. Отношения, пропорции, проценты (30 ч).

Отношения, масштаб, пропорции, проценты. Круговые диаграммы. Решение текстовых задач арифметическими методами.

Основные цели – сформировать у учащихся понятия пропорции и процента; научить их решать задачи на деление числа в данном отношении, на прямую и обратную пропорциональность, на проценты.

В начале учебного года восстанавливаются навыки вычислений с натуральными числами и обыкновенными дробями. Повторение проводится на фоне включения в учебный процесс важных прикладных задач, связанных с пропорциями и процентами. Задачи на проценты рассматриваются и решаются, как задачи на дроби, показывается их решение с помощью пропорций. После изучения десятичных дробей появится ещё один способ решения задач на проценты, связанный с умножением и делением на десятичную дробь.

В ознакомительном порядке рассматриваются темы: “Задачи на перебор всех возможных вариантов”, “Вероятность события”.

  1. Целые числа (35 ч).

Отрицательные целые числа. Сравнение целых чисел. Арифметические действия с целыми числами. Законы сложения и умножения. Раскрытие скобок, заключение в скобки и действия с суммами нескольких слагаемых. Представление целых чисел на координатной оси.

Основные цели – сформировать учащихся представление об отрицательных числах; научить их четырём арифметическим действиям с целыми числами.

Введение отрицательных чисел и правил действий с ними первоначально происходит на множестве целых чисел. Это позволяет сконцентрировать внимание учащихся на определение знака результата и выборе действия с модулями, а сами вычисления с модулями целых чисел – натуральными числами – к этому времени уже хорошо усвоены.

Доказательство законов сложения и умножения для целых чисел проводится на характерных числовых примерах с опорой на соответствующие законы для натуральных чисел. Изучение нового множества чисел завершается изображением целых чисел на координатной прямой.

При наличии учебных часов рассматривается тема “Фигуры на последовательности, симметричные относительно точки”.

  1. Рациональные числа (40 ч).

Отрицательные дроби. Рациональные числа. Сравнение рациональных чисел. Арифметические действия с дробями произвольного знака. Изображение рациональных чисел на координатной оси. Уравнения и решение задач с помощью уравнений.

Основные цели – добиться осознанного владения арифметическими действиями над рациональными числами; научиться решению уравнений и применению уравнений для решения задач.

Основное внимание при изучении данной темы уделяется действиям с рациональными числами. На втором этапе изучения отрицательных чисел соединяются сформированные ранее умения: определять знак результата и действовать с дробями. В то же время учащиеся должны понимать, что любое действие с рациональными числами можно свести к нескольким действиям с целыми числами. Доказательство законов сложения и умножения для рациональных чисел проводится на характерных числовых примерах с опорой на соответствующие законы для целых чисел.

Изучение рациональных чисел завершается их изображением на координатной прямой , введением уравнений. Учащиеся осваивают новый приём решения задач – с помощью уравнений.

При наличии учебных часов рассматриваются темы: “Буквенные выражения”, “Фигуры на плоскости, симметричные относительно прямой”. При изучении первой темы надо научиться преобразованиям простейших буквенных выражений, что будет способствовать лучшему усвоению этой темы в 7 классе. Изучение второй темы будет способствовать развитию геометрического воображения школьников.

  1. Десятичные дроби (39 ч).

Положительные десятичные дроби. Сравнение и арифметические действия с положительными десятичными дробями. Десятичные дроби и проценты. Десятичные дроби любого знака. Приближение десятичных дробей, суммы, разности, произведения частного двух чисел.

Основная цель – научиться действиям с десятичными дробями и приближенными вычислениям.

Материал, связанный с десятичными дробями, излагается с опорой на уже известные теоретические сведения – сначала для положительных, потом для десятичных дробей любого знака.

Десятичные дроби рассматриваются как новая форма записи уже изученных рациональных чисел. Важно обратить внимание учащихся на схожесть правил действий над десятичными дробями и над натуральными числами.

Здесь же показывается новые приёмы решения основных задач на проценты, сводящиеся к умножению и делению на десятичную дробь, а также способы решения сложных задач на проценты.

При изучении данной темы вводится понятие приближения десятичной дроби, разъясняются правила приближенных вычислений при сложении и вычитании, при умножении и делении. Появление приближенных вычислений в этом месте связано с тем, что при делении десятичных дробей не всегда получается конечная десятичная дробь, а также с тем, что на практике часто требуется меньше десятичных знаков, чем получается в результате вычислений. Учащиеся должны научиться в случае необходимости правильно округлять сами числа и результаты вычислений.

При наличии учебных часов рассматриваются темы: “Вычисления с помощью калькулятора”, ”Процентные расчеты с помощью калькулятора”, ”Фигуры в пространстве, симметричные относительно плоскости”.

  1. Обыкновенные и десятичные дроби (26 ч).

Периодические и непериодические десятичные дроби (действительные числа). Длина отрезка. Длина окружности. Площадь круга. Координатная ось. Декартова система координат на плоскости. Столбчатые диаграммы и графики.

Основные цели – познакомить учащихся с периодическими и непериодическими десятичными дробями (действительными числами); научить приближенным вычислениям с ними.

При изучении заключительной темы курса арифметики 5-6 классов устанавливается связь между обыкновенными и десятичными дробями. Показывается, что несократимые дроби, знаменатель которых не содержит простых делителей, кроме 2 и 5, и только они, записываются в виде конечных десятичных дробей, остальные в виде бесконечных непериодических десятичных дробей. Делается вывод, что любое рациональное число можно записать в виде периодической десятичной дроби. Затем приводятся примеры бесконечных непериодических десятичных дробей, которые и называют иррациональными числами. Рациональные и иррациональные числа – это действительные числа.

Введение бесконечных десятичных дробей (не обязательно периодических) позволяет ввести понятие длины произвольного отрезка. Здесь показывается, что длина отрезка как раз и есть бесконечная десятичная дробь, что каждой точке координатной оси соответствует действительное число.

В течение года возможны коррективы рабочей программы, связанные с объективными причинами.

Изучение математики в 6 классе направлено на реализацию целей и задач, сформулированных вФОГС общего образования по математике:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, ясность и точность мысли, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. Теоретический материал излагается на интуитивном уровне, математические методы и законы формулируются в виде правил.

В ходе изучения курса учащиеся развивают навыки вычислений с рациональными числами, продолжают получать представления об использовании букв для записи выражений и свойств арифметических действий, составления уравнений, продолжают знакомиться с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.



ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ

Требования к уровню подготовки также установлены Государственным стандартом основного общего образования в соответствии с обязательным минимумом содержания.

Требования к уровню подготовки учащихся 6 класса в соответствии с Государственным образовательным стандартом

в результате изучения курса математики в 6 классе учащиеся должны:

знать/понимать:

  • существо понятия алгоритма, приводить примеры алгоритмов;

  • как используются математические формулы и уравнения при решении математических и практических задач;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • понятия десятичной и обыкновенной дробей, правила выполнения действий с десятичными дробями, обыкновенными дробями с одинаковыми знаменателями, понятие процента;

  • понятие «уравнение» и «решение уравнения»;

  • смысл алгоритма округления десятичных дробей;

  • переместительный, распределительный и сочетательный законы;

  • понятие среднего арифметического;

  • понятие натуральной степени числа;

  • определение прямоугольного параллелепипеда и куба, формулы для вычисления длины окружности и площади круга;

уметь:

  • выполнять действия сложения и вычитания, умножения и деления с рациональными числами, возводить рациональное число в квадрат, в куб;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и обыкновенную в виде десятичной, проценты в виде дроби и дробь в виде процентов;

  • изображать числа точками на координатной прямой;

  • решать линейные уравнения;

  • пользоваться основными единицами длины, массы, времени, площади, выражать более крупные единицы через мелкие и наоборот;

  • находить значение числовых выражений;

  • решать задачи на проценты с помощью пропорций; применять прямо и обратно пропорциональные величины при решении практических задач; решать задачи на масштаб;

  • распознавать и изображать перпендикулярные и параллельные прямые с помощью линейки и угольника; определять координаты точки на координатной плоскости, отмечать точки по заданным координатам;

  • решать текстовые задачи арифметическим способом и с помощью уравнений, включая задачи, связанные с дробями и процентами;


использовать приобретенные знания и умения в практической деятельности и повседневной жизни:


  • для решения несложных практических задач, в том числе с использованием справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результатов вычислений; проверки результатов вычислений с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.


владеть познавательными коммуникативными и регулятивными универсальными учебными действиями.


решать следующие жизненно-практические задачи:


  • самостоятельно приобретать и применять знания в различных ситуациях для решения несложных практических задач, в том числе с использованием при необходимости справочных материалов, калькулятора и компьютера

  • работать в группах, аргументировать и отстаивать свою точку зрения;

  • уметь слушать других, извлекать учебную информацию на основе сопоставительного анализа объектов;

  • пользоваться предметным указателем энциклопедий и справочников для нахождения информации;

  • самостоятельно действовать в ситуации неопределенности при решении актуальных для них проблем, а также самостоятельно интерпретировать результаты решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.





Критерии и нормы оценки.

При проверке усвоения материала необходимо выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях, формировать компетенции:

- ключевые образовательные компетенции через развитие умений применять алгоритм решения уравнений, неравенств, систем уравнений и неравенств, текстовых задач, решения геометрических задач;

- компетенция саморазвития через развитие умений поставить цели деятельности, планирование этапов урока, самостоятельное подведение итогов;

- коммуникативная компетенция через умения работать в парах при решении заданий, обсуждении вариантов решения, умение аргументировать свою точку зрения;

- интеллектуальная компетенция через развития умений составлять краткую запись к задаче

- компетенция продуктивной творческой деятельности через развитие умений перевода заданий на математический язык

- информационная компетенция через формирование умения самостоятельно искать, анализировать и отбирать необходимую информацию посредством ИКТ


Промежуточная аттестация учебного курса математики осуществляется через математические диктанты, самостоятельные работы, контрольные работы по разделам учебного материала, тесты.

Предлагаются учащимся разноуровневые тесты, т.е. список заданий делится на две части – обязательную и необязательную. Обязательный уровень обеспечивает базовые знания для любого ученика. Необязательная часть рассчитана на более глубокие знания темы. Цель: способствовать развитию устойчивого умения и знания согласно желаниям и возможностям учащихся.

Задания для устного и письменного опроса учащихся со­стоят из теоретических вопросов и задач.

Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопро­су, содержит все необходимые теоретические факты и обос­нованные выводы, а его изложение и письменная запись ма­тематически грамотны и отличаются последовательностью и аккуратностью.

Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необ­ходимыми объяснениями, верно выполнены нужные вычис­ления и преобразования, получен верный ответ, последова­тельно   записано решение.

Оценка ответа учащегося при устном и письменном опросе проводится по пятибалльной системе, т. е. за ответ выставляется одна из отметок: 2 (неудовлетворительно), 3 (удовлетворительно), 4 (хорошо), 5 (отлично).

Критерии и нормы оценки знаний, умений и навыков обучающихся.

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.


Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.


Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.


Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Общая классификация ошибок

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

    • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

    • незнание наименований единиц измерения;

    • неумение выделить в ответе главное;

    • неумение применять знания, алгоритмы для решения задач;

    • неумение делать выводы и обобщения;

    • неумение читать и строить графики;

    • неумение пользоваться первоисточниками, учебником и справочниками;

    • потеря корня или сохранение постороннего корня;

    • отбрасывание без объяснений одного из них;

    • равнозначные им ошибки;

    • вычислительные ошибки, если они не являются опиской;

    • логические ошибки.


3.2. К негрубым ошибкам следует отнести:

    • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

    • неточность графика;

    • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

    • нерациональные методы работы со справочной и другой литературой;

    • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

    • нерациональные приемы вычислений и преобразований;

    • небрежное выполнение записей, чертежей, схем, графиков.



Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 14.02.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров235
Номер материала ДВ-450934
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх