Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Практическая работа по теме "Объем призмы"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Практическая работа по теме "Объем призмы"

библиотека
материалов

Объём призмы.

Цель: закрепить навык решения практических задач на вычисление объёмов призмы.


Теоретическая часть


Призмой называется многогранник, две грани которого(основания) – равные n-угольники, лежащие в параллельных плоскостях, а остальные n граней (боковые грани) – параллелограммы.

Призма называется прямой, если все её боковые рёбра перпендикулярны основаниям. Призма называется правильной, если она прямая и её основания – правильные многоугольники.


Фhello_html_546aa99a.pngормулы для нахождения площадей

Прямоугольник 13Прямоугольник 12фигур

а

S = ahello_html_m438452c1.gif b a S = a2

b a

Равнобедренный треугольник 15Равнобедренный треугольник 14

a a S = hello_html_m6a7147f2.gif a S = hello_html_642daadc.gif ahello_html_54d88a4b.gif

a b

Параллелограмм 35Прямая соединительная линия 34a

Трапеция 37Прямая соединительная линия 36hello_html_m52d9bd12.gifa h S = ahello_html_m4ab40eaf.gif

h S =

b b

Равнобедренный треугольник 44Прямая соединительная линия 43


h S =hello_html_m1722f874.gif ahello_html_m4ab40eaf.gif

a

Выполните задания

1 вариант

1 уровень

1. Выберите неверное утверждение.

а) Объём прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту;

б) Объём правильной треугольной призмы вычисляется по формуле V = a2h, где а – сторона основания , h – высота призмы;

в) Объём прямой призмы равен половине произведения площади основания на высоту.


2. Основанием прямой треугольной призмы является прямоугольный треугольник с катетами 2 и 3, боковое ребро равно 6. Найдите объём призмы.


3. Сторона основания правильной треугольной призмы равна 2√3 см, а высота – 5 см. Найдите объём призмы.

а) 15√3 см3; б) 45 см3; в) 10√3 см3; г) 12√3 см3; д) 18√3 см3.


2 уровень

4hello_html_49df53c6.png. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 5 и 8. Объем призмы равен 80. Найдите ее боковое ребро.





5. В основании правильной четырёхугольной призмы лежит квадрат со стороной 6 см. Диагональ призмы образует с плоскостью основания угол 600. Найдите:

  1. диагональ основания призмы;

  2. диагональ призмы;

  3. высоту призмы;

  4. площадь боковой поверхности призмы;

  5. площадь полной поверхности призмы;

  6. объём призмы.


3 уровень


6hello_html_1ff76f1c.png. В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 27 см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в 3 раза больше, чем у первого?







Автор
Дата добавления 16.03.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров482
Номер материала ДВ-531847
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх