Инфоурок Другое Другие методич. материалыПредмет:” Элементы высшей математики ”Т.З. Лекция № 8 Тема« Собственные значения и собственные векторы линейного преобразования»

Предмет:” Элементы высшей математики ”Т.З. Лекция № 8 Тема« Собственные значения и собственные векторы линейного преобразования»

Скачать материал

 

Предмет:”Математика для экономистов                  Отделение                       , группа ___

 

                                                                                            Семестр ___3___, курс__2____        Преподаватель  Пластун СВ                      Т.З. Лекция № 8                                                               

                           (Ф.И.О.)    

                                                                               

                                 Тема«Собственные значения и собственные векторы линейного преобразования»

 

 

 

 

1.     Собственные значения и собственные векторы линейного преобразования

2.     Использование систем линейных уравнений при решении экономических задач

1.      Определение: Пусть L – заданное n- мерное линейное пространство. Ненулевой вектор L называется собственным вектором линейного преобразования А, если существует такое число l, что выполняется равенство:A.

При этом число l называется собственным значением (характеристическим числом) линейного преобразования А, соответствующего вектору .

Определение: Если линейное преобразование А в некотором базисе ,,…, имеет матрицу А = , то собственные значения линейного преобразования А можно найти как корни l1, l2, … ,ln уравнения:

         Это уравнение называется характеристическим уравнением, а его левая часть- характеристическим многочленом линейного преобразования А.

         Следует отметить, что характеристический многочлен линейного преобразования не зависит от выбора базиса.

         Рассмотрим частный случай. Пусть А – некоторое линейное преобразование плоскости, матрица которого равна . Тогда преобразование А может быть задано формулами:

;        

в некотором базисе .

         Если преобразование А имеет собственный вектор с собственным значением l, то А.

      или     

         Т.к. собственный вектор  ненулевой, то х1 и х2 не равны нулю одновременно. Т.к.  данная система однородна, то для того, чтобы она имела нетривиальное решение, определитель системы должен быть равен нулю. В противном случае по правилу Крамера система имеет единственное решение – нулевое, что невозможно.

         Полученное уравнение является характеристическим уравнением линейного преобразования А.

         Таким образом, можно найти собственный вектор 1, х2) линейного преобразования А с собственным значением l, где l - корень характеристического уравнения, а х1 и х2 – корни системы уравнений при подстановке в нее значения l.

         Понятно, что если характеристическое уравнение не имеет действительных корней, то линейное преобразование А не имеет собственных векторов.

         Следует отметить, что если - собственный вектор преобразования А, то и любой вектор ему коллинеарный – тоже собственный с тем же самым собственным значением  l.

         Действительно, . Если учесть, что векторы имеют одно начало, то эти векторы образуют так называемое собственное направление или собственную прямую.

         Т.к. характеристическое уравнение может иметь два различных действительных корня l1 и l2, то в этом случае при подстановке их в систему уравнений получим бесконечное количество решений.  (Т.к. уравнения линейно зависимы). Это множество решений определяет две собственные прямые.

         Если характеристическое уравнение имеет два равных корня l1 = l2 = l, то либо имеется лишь одна собственная прямая, либо, если при подстановке в систему она превращается в систему вида: . Эта система удовлетворяет любым значениям х1 и х2. Тогда все векторы будут собственными, и такое преобразование называется преобразованием подобия.

Пример. Найти характеристические числа и собственные векторы линейного преобразования с матрицей А = .

Запишем линейное преобразование в виде:

Составим характеристическое уравнение:

l2 -  8l + 7 = 0;

Корни характеристического уравнения: l1 = 7;  l2 = 1;

         Для корня l1 = 7:

Из системы получается зависимость: x1 – 2x2 = 0. Собственные векторы для первого корня характеристического уравнения имеют координаты: (t; 0,5t) где t- параметр.

         Для корня l2 = 1:

Из системы получается зависимость: x1 + x2 = 0. Собственные векторы для второго корня характеристического уравнения имеют координаты: (t; -t) где t- параметр.

         Полученные собственные векторы можно записать в виде:

         Пример. Найти характеристические числа и собственные векторы линейного преобразования с матрицей А = .

Запишем линейное преобразование в виде:

Составим характеристическое уравнение:

l2 -  4l + 4 = 0;

Корни характеристического уравнения: l1 = l2 = 2;

         Получаем:

Из системы получается зависимость: x1x2 = 0. Собственные векторы для первого корня характеристического уравнения имеют координаты: (t; t) где t- параметр.

         Собственный вектор можно записать: .

*********

         Рассмотрим другой частный случай. Если - собственный вектор линейного преобразования А, заданного в трехмерном линейном пространстве, а х1, х2, х3 – компоненты этого вектора в некотором базисе  , то          ,

где l - собственное значение (характеристическое число) преобразования А.

         Если матрица линейного преобразования А имеет вид:

, то

Характеристическое уравнение:  

         Раскрыв определитель, получим кубическое уравнение относительно l. Любое кубическое уравнение с действительными коэффициентами имеет либо один, либо три действительных корня.

         Тогда любое линейное преобразование в трехмерном пространстве имеет собственные векторы.

Пример. Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А = .   Составим характеристическое уравнение:

                             

(1 - l)((5 - l)(1 - l) - 1) - (1 - l - 3) + 3(1 - 15 + 3l) = 0

(1 - l)(5 - 5l - l + l2 - 1) + 2 + l - 42 + 9l = 0

(1 - l)(4 - 6l + l2) + 10l - 40 = 0

4 - 6l + l2 - 4l + 6l2 - l3 + 10l - 40 = 0

-l3 + 7l2 – 36 = 0

-l3 + 9l2 - 2l2 – 36 = 0

-l2(l + 2) + 9(l2 – 4) = 0

(l + 2)(-l2 + 9l - 18) = 0

Собственные значения:     l1 = -2;  l2 = 3;   l3 = 6;

1) Для l1 = -2:   

Если принять х1 = 1, то Þ   х2 = 0;    x3 = -1;

Собственные векторы: 

2) Для l2 = 3:   

Если принять х1 = 1, то Þ   х2 = -1;    x3 = 1;

Собственные векторы: 

3) Для l3 = 6:   

Если принять х1 = 1, то Þ   х2 = 2;    x3 = 1;

Собственные векторы:  ,  где t – параметр.

         Пример. Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А = .     Составим характеристическое уравнение:

                                              

-(3 + l)((1 - l)(2 - l) – 2) + 2(4 - 2l - 2) - 4(2 - 1 + l) = 0

-(3 + l)(2 - l - 2l + l2 - 2) + 2(2 - 2l) - 4(1 + l) = 0

-(3 + l)(l2 - 3l) + 4 - 4l - 4 - 4l = 0

-3l2 + 9l - l3 + 3l2 - 8l = 0

-l3 + l = 0

l1 = 0;   l2 = 1;    l3 = -1;

         Для l1 = 0: 

         Если принять х3 = 1, получаем     х1 = 0,  х2 = -2

Собственные векторы        ×t,  где t – параметр.

Пример. Найти собственные значения и собственные векторы матрицы

A = .

Решение. Вычислим определитель матрицы A - lE:

 = det= det

.

Итак, = (l - 2)2 × (l+2)2. Корни характеристического уравнения =0 - это числа l1 = 2 и l2 = -2. Другими словами, мы нашли собственные значения матрицы A. Для нахождения собственных векторов матрицы A подставим найденные значения l в систему (5.6): при l = 2 имеем систему линейных однородных уравнений

 

               x1 - x2                        = 0,                x1 - x2                        = 0,

               x1 - x2                        = 0,       Þ          3x2 -7x3 - 3x4 = 0,

             3x1 -       7x3 - 3x4 = 0,                           5x3 +  x4 = 0.

             4x1 - x2 + 3x3 -  x4 = 0,

 

Следовательно, собственному значению l = 2 отвечают собственные векторы вида a (8, 8, -3, 15), где a - любое отличное от нуля действительное число. При l = -2 имеем: A - lE = A +2E = ~ ,

и поэтому координаты собственных векторов должны удовлетворять системе уравнений

 

                                                         x1+3x2            = 0,

                                                                x2             = 0,

                                                                    x3+x4= 0.

 

Поэтому собственному значению l = -2 отвечают собственные векторы вида b (0, 0,-1, 1), где b - любое отличное от нуля действительное число.

2.

Пример. Из некоторого листового материала необходимо выкроить 360 заготовок типа А, 300 заготовок типа Б и 675 заготовок типа В. При этом можно применять три способа раскроя. Количество заготовок, получаемых из каждого листа при каждом способе раскроя, указано в таблице:

 

Тип

Способ раскроя

заготовки

1

2

3

А

3

2

1

Б

1

6

2

В

4

1

5

 

Записать в математической форме условия выполнения задания.

Решение. Обозначим через x, y, z количество листов материала, раскраиваемых соответственно первым, вторым и третьим способами. Тогда при первом способе раскроя x листов будет получено 3x заготовок типа А, при втором - 2y, при третьем - z.

Для полного выполнения задания по заготовкам типа А сумма
3x +2y +z должна равняться 360, т.е.

3x +2y + z =360.

Аналогично получаем уравнения

 

                                          x + 6y +2z = 300

                                          4x + y + 5z = 675,

 

которым должны удовлетворять неизвестные x, y, z для того, чтобы выполнить задание по заготовкам Б и В. Полученная система линейных уравнений и выражает в математической форме условия выполнения всего задания по заготовкам А, Б и В. Решим систему методом исключения неизвестных. Запишем расширенную матрицу системы и приведем ее с помощью элементарных преобразований к треугольному виду.

~ ~ ~
~ ~ ~ .

Следовательно, исходная система равносильна следующей:

 

                                          x + 6y +2z = 300,

                                                2y +9z = 570,

                                                    -67z = - 4020.

 

Из последнего уравнения находим z = 60; подставляя найденное значение z во второе уравнение, получим y = 15 и, наконец, из первого имеем
x = 90. Итак, вектор C (90, 15, 60) есть решение системы.

Пример. На предприятии имеется четыре технологических способа изготовления изделий А и Б из некоторого сырья. В таблице указано количество изделий, которое может быть произведено из единицы сырья каждым из технологических способов.

Записать в математической форме условия выбора технологий при производстве из 94 ед. сырья 574 изделий А и 328 изделий Б.

 

Изделие

Выход из единицы сырья

 

I

II

III

IV

А

2

1

7

4

Б

6

12

2

3

 

Решение. Обозначим через x1, x2, x3, x4 количество сырья, которое следует переработать по каждой технологии, чтобы выполнить плановое задание. Получим систему трех линейных уравнений с четырьмя неизвестными:

 

                                  x1 +   x2 +   x3 +  x4 = 94,

                                2x1 +   x2 + 7x3 + 4x4 = 574,

                                6x1 +12x2 +2x3 + 3x4 = 328.

 

Решаем ее методом Гаусса:

 ~ ~ .

Имеем: r (А) = r (А) = 3, следовательно, число главных неизвестных равно трем, одно неизвестное x4 - свободное. Исходная система равносильна следующей:

 

                                x1 + x2 +   x3 = 94 - x4,

                                     - x2 + 5x3 = 386 - 2x4,

                                             26x3 = 2080- 9x4.

 

Из последнего уравнения находим x3 = 80 - 9/26 x4, подставляя x3 во второе уравнение, будем иметь: x2 = 14 + 7/26x4 и, наконец, из первого уравнения получим: x1 = - 12/13 x4. С математической точки зрения система имеет бесчисленное множество решений, т. е. неопределенна. С учетом реального экономического содержания величины x1 и x4 не могут быть отрицательными, тогда из соотношения x1 = - 12/13 x4 получим: x1 = x4 = 0. Тогда вектор (0, 14, 80, 0) является решением данной системы.

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Предмет:” Элементы высшей математики ”Т.З. Лекция № 8 Тема« Собственные значения и собственные векторы линейного преобразования»"

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Специалист по выставочной деятельности

Получите профессию

Технолог-калькулятор общественного питания

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 656 898 материалов в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 20.05.2020 704
    • DOCX 219.5 кбайт
    • 10 скачиваний
    • Оцените материал:
  • Настоящий материал опубликован пользователем Пластун Сергей Владимирович. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Пластун Сергей Владимирович
    Пластун Сергей Владимирович
    • На сайте: 7 лет и 5 месяцев
    • Подписчики: 238
    • Всего просмотров: 173149
    • Всего материалов: 151

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Экскурсовод

Экскурсовод (гид)

500/1000 ч.

Подать заявку О курсе

Курс профессиональной переподготовки

Руководство электронной службой архивов, библиотек и информационно-библиотечных центров

Начальник отдела (заведующий отделом) архива

600 ч.

9840 руб. 5900 руб.
Подать заявку О курсе
  • Этот курс уже прошли 25 человек

Курс профессиональной переподготовки

Организация деятельности библиотекаря в профессиональном образовании

Библиотекарь

300/600 ч.

от 7900 руб. от 3950 руб.
Подать заявку О курсе
  • Сейчас обучается 284 человека из 67 регионов
  • Этот курс уже прошли 848 человек

Курс повышения квалификации

Специалист в области охраны труда

72/180 ч.

от 1750 руб. от 1050 руб.
Подать заявку О курсе
  • Сейчас обучается 33 человека из 20 регионов
  • Этот курс уже прошли 152 человека

Мини-курс

Психология развития и воспитания детей: особенности и подходы

10 ч.

1180 руб. 590 руб.
Подать заявку О курсе
  • Сейчас обучается 25 человек из 16 регионов

Мини-курс

Искусство: от истории к глобализации

4 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Воспитание будущего поколения: от педагогики до игровых технологий

3 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Этот курс уже прошли 17 человек
Прямой эфир Загрузка...

Прямо сейчас в эфире

Инфофорум: «Всё, что волнует педагогов»