Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентации к урокам математики
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Презентации к урокам математики

библиотека
материалов
Леонард Эйлер и его вклад в математическую науку.
Карта презентации.
Блокнот. 1. x y z = (x+ky)/(k+1), где k= x1/ y1 z x1 y1 2. - центроид 3d=a+b+...
Краткие биографические сведения о Леонардо Эйлере. Идеальный математик 18 век...
Прямая Эйлера. Дан прямоугольный треугольник АСВ. Проведем медиану СО. Середи...
Прямая Эйлера. Деление отрезка в данном отношении.
Прямая Эйлера
Прямая Эйлера
Прямая Эйлера
Прямая Эйлера Задача Какие стороны пересекает прямая Эйлера в остроугольном и...
Теорема Эйлера о многогранниках. (4)Теорема Эйлера: Пусть В - число вершин вы...
Теорема Эйлера о многогранниках. Имеется много доказательств теоремы Эйлера....
Доказательство: Перепишем соотношение Эйлера дважды, один раз в виде Р + 2 =...
Теорема Эйлера о многогранниках. Задача. Доказать теорему Эйлера для плоского...
Теория графов и задача Эйлера. Издавна среди жителей Кёнигсберга была распрос...
Теория графов и задача Эйлера. Теорема Эйлера. (5) Пусть на плоскости задано...
Теория графов и задача Эйлера. Теорема Эйлера. (5) Задача. Три поссорившихся...
17 1

"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Описание презентации по отдельным слайдам:

№ слайда 1 Леонард Эйлер и его вклад в математическую науку.
Описание слайда:

Леонард Эйлер и его вклад в математическую науку.

№ слайда 2 Карта презентации.
Описание слайда:

Карта презентации.

№ слайда 3 Блокнот. 1. x y z = (x+ky)/(k+1), где k= x1/ y1 z x1 y1 2. - центроид 3d=a+b+
Описание слайда:

Блокнот. 1. x y z = (x+ky)/(k+1), где k= x1/ y1 z x1 y1 2. - центроид 3d=a+b+c 3. - ортоцентр - Центр описанной окружности d=a+b+c 4. Для многогранников, где: Р – рёбра, В – вершины и Г – грани: 1)В - Р + Г = 2 2)Р + 6≤ 3В и Р + 6≤ 3Г m – точки n – дуги, попарно не пересекаются, не проходят через m-2 точки l – количество областей m – n + l = 2 5.

№ слайда 4 Краткие биографические сведения о Леонардо Эйлере. Идеальный математик 18 век
Описание слайда:

Краткие биографические сведения о Леонардо Эйлере. Идеальный математик 18 века - так часто называют Эйлера(1707-1789). Он родился в маленькой тихой Швейцарии. Примерно в то же время переселилась в Базель из Голландии семья Бернулли: уникальное созвездие научных талантов во главе с братьями Якобом и Иоганном. По воле случая юный Эйлер попал в эту компанию. Но когда ребята подросли, выяснилось, что в Швейцарии не хватит места для их умов. Зато в России была учреждена в 1725 году Академия Наук. Русских ученых не хватало, и тройка друзей отправилась туда. Поначалу Эйлер расшифровывал дипломатические депеши, обучал молодых моряков высшей математике и астрономии, составлял таблицы для артиллерийской стрельбы и таблицы движения Луны. В 26 лет Эйлер был избран российским академиком, но через 8 лет он переехал из Петербурга в Берлин. Там "король математиков" работал с 1741 по 1766 год; потом он покинул Берлин и вернулся в Россию. Удивительно: слава Эйлера не закатилась и после того, как ученого поразила слепота (вскоре после переезда в Петербург). В 1770-е годы вокруг Эйлера выросла Петербургская математическая школа, более чем наполовину состоявшая из русских ученых. Тогда же завершилась публикация главной его книги - "Основ дифференциального и интегрального исчисления". В начале сентября 1783 Эйлер почувствовал легкое недомогание. 18 сентября он еще занимался математическими исследованиями, но неожиданно потерял сознание и «прекратил вычислять и жить». Похоронен на Смоленском лютеранском кладбище в Петербурге, откуда его прах перенесен осенью 1956 в некрополь Александро-Невской лавры. Л. Эйлер

№ слайда 5 Прямая Эйлера. Дан прямоугольный треугольник АСВ. Проведем медиану СО. Середи
Описание слайда:

Прямая Эйлера. Дан прямоугольный треугольник АСВ. Проведем медиану СО. Середина O гипотенузы AB является центром описанной около него окружности. Центроид G делит медиану CO в отношении 2:1, считая от вершины C. Катеты AC и BC являются высотами треугольника, поэтому вершина C прямого угла совпадает с ортоцентром H треугольника. Таким образом, точки O,G,H лежат на одной прямой, причем OH=3OG. Прямая Эйлера – прямая, которой принадлежат ортоцентр (точка пересечения высот) , центроид (точка пересечения медиан) и центр описанной окружности треугольника. = Н

№ слайда 6 Прямая Эйлера. Деление отрезка в данном отношении.
Описание слайда:

Прямая Эйлера. Деление отрезка в данном отношении.

№ слайда 7 Прямая Эйлера
Описание слайда:

Прямая Эйлера

№ слайда 8 Прямая Эйлера
Описание слайда:

Прямая Эйлера

№ слайда 9 Прямая Эйлера
Описание слайда:

Прямая Эйлера

№ слайда 10 Прямая Эйлера Задача Какие стороны пересекает прямая Эйлера в остроугольном и
Описание слайда:

Прямая Эйлера Задача Какие стороны пересекает прямая Эйлера в остроугольном и тупоугольном треугольниках? Решение Пусть AB > BC > CA. Легко проверить, что для остроугольного и тупоугольного треугольников точка H пересечения высот и центр O описанной окружности расположены именно так, как на рис. (т. е. для остроугольного треугольника точка O лежит внутри треугольника BHC1, а для тупоугольного точки O и B лежат по одну сторону от прямой CH). Поэтому в остроугольном треугольнике прямая Эйлера пересекает наибольшую сторону AB и наименьшую сторону AC, а в тупоугольном треугольнике — наибольшую сторону AB и среднюю по длине сторону BC.

№ слайда 11 Теорема Эйлера о многогранниках. (4)Теорема Эйлера: Пусть В - число вершин вы
Описание слайда:

Теорема Эйлера о многогранниках. (4)Теорема Эйлера: Пусть В - число вершин выпуклого многогранника, Р - число его ребер и Г - число граней. Тогда верно равенство В - Р + Г = 2 Число х = В - Р + Г называется эйлеровой характеристикой многогранника. Согласно теореме Эйлера, для выпуклого многогранника эта характеристика равна 2. То, что эйлеровая характеристика равна 2 для многих многогранников, видно из следующей таблицы: Многогранник В Р Г Х Тетраэдр Куб n-угольная пирамида n-угольная призма 4 6 4 8 12 6 n+1 2n n+1 2n 3n n+2 2 2 2 2

№ слайда 12 Теорема Эйлера о многогранниках. Имеется много доказательств теоремы Эйлера.
Описание слайда:

Теорема Эйлера о многогранниках. Имеется много доказательств теоремы Эйлера. В одной из них используется формула для суммы углов многоугольника. Рассмотрим это доказательство. Возьмем снаружи многогранника точку О вблизи от какой-либо грани F и спроектируем остальные грани на F из центра О . Их проекции образуют разбиение грани F на многоугольники. Подсчитаем двумя способами сумму α углов всех полученных многоугольников и самой грани F. Сумма угов n-угольника равна π(n - 2). Сложим эти числа для всех граней (включая грань F). Сумма членов вида πn равна общему числу сторон всех граней, т.е. 2Р- ведь каждое из Р рёбер принадлежит двум граням. А так как у нас всего Г слагаемых, α = π(2Р - 2Г). Теперь найдем сумму углов при каждой вершине разбиения и сложим эти суммы. Если вершина лежит внутри грани F, то сумма углов вокруг нее равна 2π. Таких вершин В-k, где k- число вершин самой грани F, а значит, их вклад равен 2π(В - k). Углы при вершинах F считаются в сумме дважды (как углы F и как углы многоугольников разбиения); их вклад равен 2π(k - 2). Таким образом, α = 2π(B - k) + 2π(k - 2) = 2π(B - 2). Приравнивая два результата и сокращения на 2π, получаем требуемое равенство Р - Г = В - 2 F

№ слайда 13 Доказательство: Перепишем соотношение Эйлера дважды, один раз в виде Р + 2 =
Описание слайда:

Доказательство: Перепишем соотношение Эйлера дважды, один раз в виде Р + 2 = В + Г И другой раз в виде 4 = 2В - 2Р + 2Г Складывая эти равенства, получаем Р + 6 = 3В + 3Г - 2Р Так как у каждой грани многогранника не менее трех сторон, то 3Г≤ 2Р. Отсюда сразу получаем Р + 6≤ 3В. Утверждение доказано. Доказательство: Обозначим через Гi число i-угольных граней в многограннике М. Ясно, что Г = Г3 + Г4 + Г5 + … Ясно также, что каждая i-угольная грань содержит i ребер многогранника. С другой стороны, каждое ребро многогранника принадлежит в точности двум граням. Поэтому в сумме 3Г3 + 4Г4 + 5Г5 + … каждое ребро многогранника подсчитано, причем подсчитано дважды. Отсюда имеем 2Р = 3Г3 + 4Г4 + 5Г5 +… Рассмотрим теперь сумму S плоских углов многогранника: S = Г3 ·π + Г4 · 2π + Гi · ( i -2 )π + … С учетом полученных соотношений и теоремы Эйлера соотношение можно переписать так: S = Г3 ( 3 - 2 )π + Г4 (4 -2 )π + Гi ( i - 2 )π + … = 2Рπ - 2Гπ = 2Вπ - 4π.

№ слайда 14 Теорема Эйлера о многогранниках. Задача. Доказать теорему Эйлера для плоского
Описание слайда:

Теорема Эйлера о многогранниках. Задача. Доказать теорему Эйлера для плоского графа. (Граф называется плоским, если его можно расположить на плоскости так, чтобы ребра пересекались только в вершинах.) Если в графе есть цикл, то есть внутренняя грань. Возьмем цикл, ограничивающий внутреннюю грань. Выкинем из него одно ребро. Граф остался связным, плоским. Число Р уменьшилось на один, но и число Г уменьшилось на один, т.к. грань, которая была по сторону от стертого ребра стерлась. Таким образом, число В+Г-Р не изменилось. Если в графе опять есть цикл мы поступаем так же. Т.к. ребер в графе конечное число, а количество ребер постепенно уменьшается, то когда-нибудь наше стирание его рёбер закончится. Т.е. мы придем к ситуации, что число В+Г-Р не изменилось по сравнению с первоначальным, граф остался связным, плоским и циклов в графе нет. => граф стал деревом, а грань осталась одна - внешняя. Продолжаем стирать грани. Число Р уменьшается на один, число В уменьшается на один, число В+Г-Р не меняется. Полученный граф снова дерево, он плоский и связный, а число вершин у него уменьшилось => поступаем так, пока не останется две вершины, соединенные ребром. Тут уже не сложно посчитать, что В+Г-Р=2+1-1=2, а число В+Г-Р не менялось => для начального графа оно тоже 2.

№ слайда 15 Теория графов и задача Эйлера. Издавна среди жителей Кёнигсберга была распрос
Описание слайда:

Теория графов и задача Эйлера. Издавна среди жителей Кёнигсберга была распространена такая загадка: как пройти по всем мостам, не проходя ни по одному из них дважды? Многие кёнигсбержцы пытались решить эту задачу, как теоретически, так и практически, во время прогулок. Но никому это не удавалось, однако доказать, что это даже теоретически невозможно. В 1736 году задача о семи мостах заинтересовала выдающегося математика, члена Петербургской академии наук Леонарда Эйлера, Эйлер пишет о том, что он смог найти правило, пользуясь которым легко определить есть ли у неё решение. На упрощённой схеме части города (графе) мостам соответствуют линии (рёбра графа), а частям города — точки соединения линий (вершины графа). В ходе рассуждений Эйлер пришёл к следующим выводам: Число нечётных вершин (вершин, к которым ведёт нечётное число рёбер) графа всегда чётно. Невозможно начертить граф, который имел бы нечётное число нечётных вершин. Если все вершины графа чётные, то можно, не отрывая карандаша от бумаги, начертить граф, при этом можно начинать с любой вершины графа и завершить его в той же вершине. Граф с более чем двумя нечётными вершинами невозможно начертить одним росчерком. Граф кёнигсбергских мостов имел четыре нечётные вершины, следовательно невозможно пройти по всем мостам, не проходя ни по одному из них дважды.

№ слайда 16 Теория графов и задача Эйлера. Теорема Эйлера. (5) Пусть на плоскости задано
Описание слайда:

Теория графов и задача Эйлера. Теорема Эйлера. (5) Пусть на плоскости задано m точек и n попарно непересекающихся дуг, каждая из которых соединяет какие-либо две данные точки и не проходит через остальные m–2 точки, и пусть эти дуги делят плоскость на l областей. Если из каждой данной точки в любую из остальных можно попасть, двигаясь по этим дугам, то m – n + l = 2. В случае, изображенном на рисунке 1, все условия теоремы Эйлера выполнены, m=12, n=18, l=8 и m–n+l=2. На рисунках 2 и 3 изображены случаи, когда условия этой теоремы не выполняются. Так, на рисунке 2 из точки A1 нельзя попасть в точку A5 и m–n+l=3≠2, а на рисунке 3 линия, соединяющая точки A1 и A2, является самопересекающейся и опять m–n+l=3≠2. В некоторых задачах совокупность, состоящую из нескольких точек и соединяющих их попарно непересекающихся дуг, мы называем картой; при этом точки из этой совокупности мы называем вершинами, а области, на которые дуги делят плоскость, — странами.

№ слайда 17 Теория графов и задача Эйлера. Теорема Эйлера. (5) Задача. Три поссорившихся
Описание слайда:

Теория графов и задача Эйлера. Теорема Эйлера. (5) Задача. Три поссорившихся соседа имеют три общих колодца. Можно ли провести непересекающиеся дорожки от каждого дома к каждому колодцу? Изобразим дома синими, а колодцы — чёрными точками и каждую синюю точку соединим дугой с каждой чёрной точкой так, чтобы  девять  полученных дуг попарно не пересекались. Тогда всякие две точки, изображающие дома или колодцы, будут соединены цепочкой дуг, и в силу теоремы Эйлера эти девять дуг разделят плоскость на 9–6+2=5 областей. Каждая из пяти областей ограничена по крайней мере четырьмя дугами, так как по условию задачи ни одна из дорожек не должна непосредственно соединять два дома или два колодца. Поэтому число дуг должно быть не меньше ½·5·4 = 10, и, следовательно, наше предположение неверно.

Краткое описание документа:

Педагогами и психологами накоплено много рекомендаций для формирования и развития интереса к математике. Правда, из-за сложности психики и внутреннего мира ребенка эти рекомендации не всегда могут срабатывать, как хотелось бы. Эта же сложность служит главной причиной того, что в само понятие интереса часто вкладывается настолько разнообразный смысл, что трудно бывает найти общую основу этого понятия. И сами рекомендации настолько разнообразны, что трудно их «привести к общему знаменателю». Поэтому, каждый педагог старается собрать по крупицам все интересное и занимательное для лучшего усвоения материала по предмету.

Автор
Дата добавления 19.01.2015
Раздел Математика
Подраздел Презентации
Просмотров352
Номер материала 317305
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх