Инфоурок / Физика / Презентации / Презентации по физике 7-11 кл.

Презентации по физике 7-11 кл.

Курсы профессиональной переподготовки
124 курса

Выдаем дипломы установленного образца

Заочное обучение - на сайте «Инфоурок»
(в дипломе форма обучения не указывается)

Начало обучения: 22 ноября
(набор групп каждую неделю)

Лицензия на образовательную деятельность
(№5201 выдана ООО «Инфоурок» 20.05.2016)


Скидка 50%

от 13 800  6 900 руб. / 300 часов

от 17 800  8 900 руб. / 600 часов

Выберите квалификацию, которая должна быть указана в Вашем дипломе:
... и ещё 87 других квалификаций, которые Вы можете получить

Получите наградные документы сразу с 38 конкурсов за один орг.взнос: Подробнее ->>

библиотека
материалов
Кипение
Проверка знаний учащихся.
Каковы основные положения молекулярной теории строения вещества? В каких агр...
Кастрюлю с водой поставили на плиту. Выберите правильное, утверждение: если к...
Испарение происходит … при любой температуре. при температуре кипения. при о...
Парообразование, происходящее по всему объему жидкости вследствие возникнове...
Во время кипения температура жидкости не меняется.. Температура кипения завис...
ЧТО ЖЕ ПРОИСХОДИТ ВНУТРИ ЖИДКОСТИ ПРИ КИПЕНИИ ? Кипение представляет собой пе...
На воздушный пузырек объемом на дне сосуда действует подъемная сила: Fпод = F...
Кипение происходит с поглощением теплоты. Большая часть подводимой теплоты ра...
Q	– количество теплоты, Дж r	– удельная теплота парообразования, Дж/кг m	– ма...
Это интересно. Продолжительность варки картофеля, начиная с момента кипения,...
Проверь дома. У нас в наличии для чистоты следующего опыта имеется два абсолю...
13 1

Описание презентации по отдельным слайдам:

№ слайда 1 Кипение
Описание слайда:

Кипение

№ слайда 2 Проверка знаний учащихся.
Описание слайда:

Проверка знаний учащихся.

№ слайда 3 Каковы основные положения молекулярной теории строения вещества? В каких агр
Описание слайда:

Каковы основные положения молекулярной теории строения вещества? В каких агрегатных состояниях может находиться вещество? Изменяются ли молекулы при переходе вещества из одного состояния в другое? Одинаковы ли скорости движения молекул вещества, находящегося в любом агрегатном состоянии? Какой энергией обладают молекулы вследствие своего движения? вследствие взаимодействия? Какую энергию называют внутренней? От чего и как она зависит? Почему?

№ слайда 4 Кастрюлю с водой поставили на плиту. Выберите правильное, утверждение: если к
Описание слайда:

Кастрюлю с водой поставили на плиту. Выберите правильное, утверждение: если кастрюлю накрыть крышкой, то скорость испарения увеличится. с ростом температуры скорость испарения уменьшается вода испаряется при любой температуре Из холодильника достали стеклянную бутылку с молоком и поставили на стол. Выберите правильное, утверждение: бутылка «запотела» - на ней произошла конденсация водяного пара. при «запотевании» бутылка охладилась ещё больше. при конденсации водяного пара поглощается тепло Чтобы охладиться в жаркий день, мальчик надел мокрую футболку. Выберите правильное, утверждение: охлаждение происходит за счет конденсации водяного пара. охлаждение происходит за счет испарения воды. если подует ветерок, испарение воды замедлится. Мама вывесила во дворе мокрое бельё. Выберите правильное утверждение: бельё высыхает вследствие конденсации водяного пара. при испарении влаги из белья его температура повышается. если подует ветерок, бельё высохнет быстрее.

№ слайда 5 Испарение происходит … при любой температуре. при температуре кипения. при о
Описание слайда:

Испарение происходит … при любой температуре. при температуре кипения. при определенной температуре для каждой жидкости. Если нет притока энергии к жидкости извне, испарение сопровождается повышением температуры жидкости. понижением температуря жидкости. температура жидкости не меняется. При испарении вода охлаждается. Это объясняется тем, что воду покидают частицы… самые медленные. самые быстрые. самые крупные. При переходе вещества из газообразного состояния в жидкое (при конденсации газа) уменьшается энергия взаимодействия частиц. увеличивается энергия взаимодействия частиц. частицы начинают двигаться медленнее. Почему листья салата лучше срезать утром? они содержат больше витаминов. они более сочные. они имеют более острый запах. .Какое количество теплоты необходимо для нагревания 100г меди от 100С до 200С? Удельная теплоёмкость меди 370_Дж_ кг . 0С Какое количество теплоты необходимо для нагревания 200г алюминия от 200 С до 300 С? Удельная теплоёмкость алюминия 910 Дж/кг.0С

№ слайда 6 Парообразование, происходящее по всему объему жидкости вследствие возникнове
Описание слайда:

Парообразование, происходящее по всему объему жидкости вследствие возникновения и всплытия на поверхность многочисленных пузырей насыщенного пара, называется кипением. При кипении температуры жидкости и пара над ее поверхностью равны. Температура кипения жидкостей зависит от внешнего давления. Кипение - это интенсивное парообразование, которое происходит при нагревании жидкости не только с поверхности, но и внутри неё.

№ слайда 7 Во время кипения температура жидкости не меняется.. Температура кипения завис
Описание слайда:

Во время кипения температура жидкости не меняется.. Температура кипения зависит от давления, оказываемого на жидкость. Каждое вещество при одном и том же давлении имеет свою температуру кипения. При увеличением атмосферного давления кипение начинается при более высокой температуре, при уменьшении давления - наоборот.. Так, например, вода кипит при 100 °С лишь при нормальном атмосферном давлении.

№ слайда 8 ЧТО ЖЕ ПРОИСХОДИТ ВНУТРИ ЖИДКОСТИ ПРИ КИПЕНИИ ? Кипение представляет собой пе
Описание слайда:

ЧТО ЖЕ ПРОИСХОДИТ ВНУТРИ ЖИДКОСТИ ПРИ КИПЕНИИ ? Кипение представляет собой переход жидкости в пар с непрерывным образованием и ростом в жидкости пузырьков пара, внутрь которых происходит испарение жидкости. В начале нагревания вода насыщена воздухом и имеет комнатную температуру. При нагревании воды, растворенный в ней газ выделяется на дне и стенках сосуда, образуя воздушные пузырьки. Они начинают появляться задолго до кипения. В эти пузырьки испаряется вода. Пузырек, наполненный паром, при достаточно высокой температуре начинает раздуваться. Достигнув определенных размеров он отрывается от дна, поднимается к поверхности воды и лопается. При этом пар покидает жидкость. Если вода прогрета недостаточно, то пузырек пара, поднимаясь в холодные слои, схлопывается. Возникающие при этом колебания воды приводят к появлению во всем объеме воды огромного количества мелких пузырьков воздуха: так называемый "белый ключ".

№ слайда 9 На воздушный пузырек объемом на дне сосуда действует подъемная сила: Fпод = F
Описание слайда:

На воздушный пузырек объемом на дне сосуда действует подъемная сила: Fпод = Fархимеда - Fтяжести Пузырек прижат ко дну, поскольку на нижнюю поверхность силы давления не действуют. При нагреве пузырек увеличивается за счет выделения в него газа и отрывается от дна, когда подъемная сила будет немного больше прижимающей. Размер пузырька, способного оторваться от дна, зависит от его формы. Форма пузырьков на дне определяется смачиваемостью дна сосуда. Когда пузырек лопается, вся окружающая его жидкость устремляется внутрь, и возникает кольцевая волна. Смыкаясь, она выбрасывает вверх столбик воды. При схлопывании лопающихся пузырьков в жидкости распространяются ударные волны ультразвуковых частот, сопровождаемые слышимым шумом. Для начальных стадий кипения характерны самые громкие и высокие звуки (на стадии "белого ключа" чайник "поет").

№ слайда 10 Кипение происходит с поглощением теплоты. Большая часть подводимой теплоты ра
Описание слайда:

Кипение происходит с поглощением теплоты. Большая часть подводимой теплоты расходуется на разрыв связей между частицами вещества, остальная часть - на работу, совершаемую при расширении пара. В результате энергия взаимодействия между частицами пара становится больше, чем между частицами жидкости, поэтому внутренняя энергия пара больше, чем внутренняя энергия жидкости при той же температуре. Количество теплоты, необходимое для перевода жидкости в пар в процессе кипения можно рассчитать по формуле:

№ слайда 11 Q	– количество теплоты, Дж r	– удельная теплота парообразования, Дж/кг m	– ма
Описание слайда:

Q – количество теплоты, Дж r – удельная теплота парообразования, Дж/кг m – масса тела, кг Коэффициент "r" берут из таблиц. Удельная теплота парообразования – физическая величина, показывающая количество теплоты, необходимое для превращения в пар 1 кг вещества при указанной температуре. Единица измерения – 1 Дж/кг.

№ слайда 12 Это интересно. Продолжительность варки картофеля, начиная с момента кипения,
Описание слайда:

Это интересно. Продолжительность варки картофеля, начиная с момента кипения, не зависит от мощности нагревателя. Продолжительность определяется временем пребывания продукта при температуре кипения. Мощность нагревателя не влияет на температуру кипения, а влияет только на скорость испарения воды. Кипением можно заставить воду замерзнуть. Для этого надо производить откачку воздуха и водяного пара из сосуда, где находится вода, так, чтобы вода все время кипела. В горных районах на значительной высоте при пониженном атмосферном давлении вода кипит при температурах ниже, чем 100 градусов Цельсия. Ждать, пока сварится такой обед, приходится дольше. При приготовлении пищи давление внутри кастрюли - "скороварки" - около 200 кПа, и суп в такой кастрюле сварится значительно быстрее. Можно набрать в шприц воду примерно до половины, закрыть той же пробочкой и резко потянуть за поршень. В воде возникнет масса пузырьков, говорящих, что начался процесс кипения воды (и это при комнатной температуре!).

№ слайда 13 Проверь дома. У нас в наличии для чистоты следующего опыта имеется два абсолю
Описание слайда:

Проверь дома. У нас в наличии для чистоты следующего опыта имеется два абсолютно одинаковых электрических чайника, в одном из которых остывшая кипяченая вода, которую я приготовил заранее, а в другом сырая вода. ВОПРОС: Сырая или кипяченая вода закипит быстрее при одинаковых условиях нагревания?

Самые низкие цены на курсы переподготовки

Специально для учителей, воспитателей и других работников системы образования действуют 50% скидки при обучении на курсах профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца с присвоением квалификации (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок", но в дипломе форма обучения не указывается.

Начало обучения ближайшей группы: 22 ноября. Оплата возможна в беспроцентную рассрочку (10% в начале обучения и 90% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru


Краткое описание документа:

Рабочая программа

по учебному предмету  «Физика 7-9»

(базовый уровень)

 

                                                                                        Учитель высшей квалификационной категории Горбушин Н.Н.

 

2012 год

 

 

Пояснительная записка

 

Рабочая программа по физике составлена на основе примерной программы основного общего образования по физике для 7-9 классов (подготовили: В.О. Орлов, О.Ф. Кабардин, В.А. Коровин, А.Ю. Пентин, Н.С. Пурышева, В.Е. Фрадкин) и авторской программы (авторы: Е.М. Гутник, А.В. Пёрышкин), составленной в соответствии с новым, утверждённым в 2004 г. федеральным компонентом государственного стандарта основного общего образования по физике.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта, дает распределение учебных часов по разделам курса и последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, определяет набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых учащимися.

Структура документа

Рабочая программа по физике включает три раздела: пояснительную записку; основное содержание с распределением учебных часов по разделам курса и последовательностью изучения тем и разделов; требования к уровню подготовки выпускников.

Общая характеристика учебного предмета

Физика как наука о наиболее общих законах природы, выступая в качестве  учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов  школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и физические методы изучения природы».

Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики в структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения: механические явления, тепловые явления, электромагнитные явления, квантовые явления. Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.

Цели изучения физики

Изучение физики в образовательных учреждениях основного общего образования направлено на достижение следующих целей:

    освоение знаний о механических, тепловых, электромагнитных и квантовых явлениях; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;

    овладение умениямипроводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;

    развитиепознавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;

    воспитание убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;

    использование полученных знаний и уменийдля решения практических задач повседневной жизни, для обеспечения безопасности  своей жизни, рационального природопользования и охраны окружающей среды.

 

Место предмета в учебном плане

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 204 часа для обязательного изучения физики на ступени основного общего образования. В том числе в 7, 8 и 9 классах по 68 учебных часов из расчета 2 учебных часа в неделю.

Количество плановых контрольных работ 12 (3 - 7 кл, 7 - 8 кл, 2 - 9 кл)

Количество плановых лабораторных работ 37 (14 – 7 кл, 14 – 8 кл, 9 – 9 кл)

 

Общеучебные умения, навыки и способы деятельности

Рабочая программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе основного общего образования являются:

Познавательная деятельность:

·       использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;

·       формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;

·       овладение адекватными способами решения теоретических и экспериментальных задач;

·       приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.

Информационно-коммуникативная деятельность:

·       владение монологической и диалогической речью, развитие способности понимать точку зрения собеседника и признавать право на иное мнение;

·       использование для решения познавательных и коммуникативных задач различных источников информации.

Рефлексивная деятельность:

·       владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:

·       организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

 

Основное содержание (204 часа)

Физика и физические методы изучения природы

Физика — наука о природе. Наблюдение и описание физических явлений. Физические приборы. Физические величины и их измерение. Погрешности измерений. Международная система единиц.  Физический эксперимент и физическая теория. Физические модели. Роль математики в развитии физики. Физика и техника. Физика и развитие представлений о материальном мире.

Демонстрации

Примеры механических, тепловых, электрических, магнитных и световых явлений. Физические приборы.

Лабораторные работы и опыты

Определение цены деления шкалы измерительного прибора.[1]Измерение длины. Измерение объема жидкости и твердого тела.

Измерение температуры.

Механические явления

Механическое движение. Относительность движения. Система отсчета.  Траектория. Путь. Прямолинейное равномерное движение. Скорость равномерного прямолинейного движения. Методы измерения расстояния, времени и скорости.

Неравномерное движение.  Мгновенная скорость. Ускорение.  Равноускоренное движение. Свободное падение тел. Графики зависимости пути и скорости от времени.

Равномерное движениепо окружности. Период и частота обращения.

Явление инерции. Первый закон Ньютона. Масса тела. Плотность вещества. Методы измерения массы и плотности.

Взаимодействие тел. Сила. Правило сложения сил.

Сила упругости. Методы измерения силы.

Второй закон Ньютона. Третий закон Ньютона.

Сила тяжести. Закон всемирного тяготения. Искусственные спутники Земли. Вес тела. Невесомость. Геоцентрическая и гелиоцентрическая системы мира.

Сила трения.

Момент силы. Условия равновесия рычага. Центр тяжести тела. Условия равновесия тел. 

Импульс. Закон сохранения импульса. Реактивное движение.

Работа. Мощность. Кинетическая энергия. Потенциальная энергия взаимодействующих тел. Закон сохранения механической энергии.  Простые механизмы. Коэффициент полезного действия. Методы измерения энергии, работы и мощности.

Давление. Атмосферное давление. Методы измерения давления. Закон Паскаля. Гидравлические машины. Закон Архимеда. Условие плавания тел.

Механические колебания. Период, частота и амплитуда колебаний. Период колебаний математического и пружинного маятников.

Механические волны. Длина волны. Звук.

Демонстрации

Равномерное прямолинейное движение. Относительность движения. Равноускоренное движение. Свободное падение тел в трубке Ньютона. Направление скорости при равномерном движении по окружности. Явление инерции. Взаимодействие тел. Зависимость силы упругости от деформации пружины. Сложение сил. Сила трения. Второй закон Ньютона. Третий закон Ньютона. Невесомость. Закон сохранения импульса. Реактивное движение. Изменение энергии тела при совершении работы. Превращения механической энергии из одной формы в другую. Зависимость давления твердого тела на опору от действующей силы и площади опоры. Обнаружение атмосферного давления. Измерение атмосферного давления барометром - анероидом. Закон Паскаля. Гидравлический пресс. Закон Архимеда. Простые механизмы. Механические колебания. Механические волны. Звуковые колебания. Условия распространения звука.

Лабораторные работы и опыты

Измерение скорости равномерного движения. Изучение зависимости пути от времени при равномерном иравноускоренном движении. Измерение ускорения прямолинейного равноускоренного движения. Измерение массы. Измерение плотности твердого тела.

Измерение плотности жидкости. Измерение силы динамометром. Сложение сил, направленных вдоль одной прямой.

Сложение сил, направленных под углом. Исследование зависимости силы тяжести от массы тела. Исследование зависимости силы упругости от удлинения пружины. Измерение жесткости пружины. Исследование силы трения скольжения. Измерение коэффициента трения скольжения. Исследование условий равновесия рычага. Нахождение центра тяжести плоского тела. Вычисление КПД наклонной плоскости. Измерение кинетической энергии тела. Измерение изменения  потенциальной энергии  тела. Измерение мощности. Измерение архимедовой силы. Изучение условий плавания тел. Изучение зависимости периода колебаний маятника от длины нити. Измерение ускорения свободного падения с помощью маятника. Изучение зависимости периода колебаний груза на пружине от массы груза.

Тепловые явления

Строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия.  Взаимодействие частиц вещества. Модели строения газов, жидкостей и твердых тел и объяснение свойств вещества на основе этих моделей.

Тепловое движение. Тепловое равновесие. Температура и ее измерение. Связь температуры со средней скоростью теплового хаотического движения частиц.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Виды теплопередачи: теплопроводность, конвекция, излучение. Количество теплоты. Удельная теплоемкость. Закон сохранения энергии в тепловых процессах. Необратимость процессов теплопередачи.

Испарение и конденсация. Насыщенный пар. Влажность воздуха. Кипение. Зависимость температуры кипения от давления.  Плавление и кристаллизация. Удельная теплота плавления и парообразования. Удельная теплота сгорания. Расчет количества теплоты при теплообмене.

Принципы работы тепловых двигателей. Паровая турбина. Двигатель внутреннего сгорания. Реактивный двигатель. КПД теплового двигателя. Объяснение устройства и принципа действия холодильника.

Преобразования энергии в тепловых машинах. Экологические проблемы использования тепловых машин.

Демонстрации

Сжимаемость газов. Диффузия в газах и жидкостях. Модель хаотического движения молекул. Модель броуновского движения.

Сохранение объема жидкости при изменении  формы сосуда. Сцепление свинцовых цилиндров. Принцип действия термометра.

Изменение внутренней энергии тела при совершении работы и при теплопередаче. Теплопроводность различных материалов.

Конвекция в жидкостях и газах. Теплопередача путем излучения. Сравнение удельных теплоемкостей различных веществ.

Явление испарения. Кипение воды. Постоянство температуры кипения жидкости. Явления плавления и кристаллизации.

Измерение влажности воздуха психрометром или гигрометром. Устройство четырехтактного двигателя внутреннего сгорания.

Устройство паровой турбины

Лабораторные работы и опыты

Исследование изменения со временем температуры остывающей воды. Изучение явления теплообмена.

Измерение удельной теплоемкости вещества. Измерение влажности воздуха.

Исследование зависимости объема газа от давления при постоянной температуре.

Электрические и магнитные явления

Электризация тел. Электрический заряд. Два вида электрических зарядов. Взаимодействие зарядов. Закон сохранения электрического заряда.

Электрическое поле.Действие электрического поля на электрические заряды. Проводники, диэлектрики и полупроводники. Конденсатор.  Энергия электрического поля конденсатора.

Постоянный электрический ток. Источники постоянного тока. Действия электрического тока.  Сила тока. Напряжение. Электрическое сопротивление. Электрическая цепь.Закон Ома для участка электрической цепи. Последовательное и параллельное соединения проводников.Работа и мощность электрического тока. Закон Джоуля-Ленца. Носители электрических зарядов в металлах, полупроводниках, электролитах и газах. Полупроводниковые приборы.

Опыт Эрстеда. Магнитное поле тока. Взаимодействие постоянных магнитов. Магнитное поле Земли. Электромагнит.  Действие магнитного поля на проводник с током.  Сила Ампера. Электродвигатель. Электромагнитное реле.

Демонстрации

Электризация тел. Два рода электрических зарядов. Устройство и действие электроскопа. Проводники и изоляторы.

Электризация через влияние Перенос электрического заряда с одного тела на другое. Закон сохранения электрического заряда.

Устройство конденсатора. Энергия заряженного конденсатора. Источники постоянного тока. Составление электрической цепи.

Электрический ток в электролитах. Электролиз. Электрический ток в полупроводниках. Электрические свойства полупроводников.

Электрический разряд в газах. Измерение силы тока амперметром.

Наблюдение постоянства силы тока на разных участках неразветвленной электрической цепи.

Измерение силы тока в разветвленной электрической цепи. Измерение напряжения вольтметром.

Изучение зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала.

Удельное сопротивление. Реостат и магазин сопротивлений. Измерение напряжений в последовательной электрической цепи.

Зависимость силы тока от напряжения на участке электрической цепи. Опыт Эрстеда. Магнитное поле тока.

Действие магнитного поля на проводник с током. Устройство электродвигателя.

Лабораторные работы и опыты

Наблюдение электрического взаимодействия тел Сборка электрической цепи и измерение силы тока и напряжения. Исследование

зависимости силы тока в проводнике от напряжения на его концах при постоянном сопротивлении. Исследование зависимости силы

тока в электрической цепи от сопротивления при постоянном напряжении. Изучение последовательного соединения проводников.

Изучение параллельного соединения проводников. Измерение сопротивление при помощи амперметра и вольтметра.

Изучение зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала.

Удельное сопротивление. Измерение работы и мощности электрического тока. Изучение электрических свойств жидкостей.

Изготовление гальванического элемента. Изучение взаимодействия постоянных магнитов. Исследование магнитного поля прямого

проводника и катушки с током. Исследование явления намагничивания железа. Изучение принципа действия электромагнитного

реле. Изучение действия магнитного поля на проводник с током. Изучение принципа действия электродвигателя.

Общая информация

Номер материала: 403306
Курсы профессиональной переподготовки
124 курса

Выдаем дипломы установленного образца

Заочное обучение - на сайте «Инфоурок»
(в дипломе форма обучения не указывается)

Начало обучения: 22 ноября
(набор групп каждую неделю)

Лицензия на образовательную деятельность
(№5201 выдана ООО «Инфоурок» 20.05.2016)


Скидка 50%

от 13 800  6 900 руб. / 300 часов

от 17 800  8 900 руб. / 600 часов

Выберите квалификацию, которая должна быть указана в Вашем дипломе:
... и ещё 87 других квалификаций, которые Вы можете получить

Похожие материалы

Получите наградные документы сразу с 38 конкурсов за один орг.взнос: Подробнее ->>