Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация к исследовательской работе "Что за чудо эти многогранники"

Презентация к исследовательской работе "Что за чудо эти многогранники"


  • Математика

Поделитесь материалом с коллегами:

(исследовательская работа) Выполнили работу ученицы 10 «в» класса Брыгина Юл...
Цель работы: Изучить правильные многогранники. И ознакомиться с материалами,...
Гипотеза Наша гипотеза заключается в том, что наш мир не может существовать б...
Виды многогранников правильные звездчатые полуправильные
Что же такое правильный многогранник? Многогранник называется правильным, есл...
Возникает вопрос: сколько существует различных типов правильных многограннико...
Тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершин...
Куб составлен из шести квадратов. Каждая его вершина является вершиной трех...
Октаэдр составлен из восьми равносторонних треугольников. Каждая его вершина...
Икосаэдр составлен из двадцати равносторонних треугольников. Каждая его верш...
Додекаэдр составлен из двенадцати равносторонних пятиугольников. Каждая его в...
Полуправильные многогранники Выпуклый многогранник, гранями которого являются...
Что скрывается под звездчатыми многогранниками? Звездчатые многогранники явля...
Развитие пространственного мышления в решениях задач. Модель молекулы метана...
Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно подоб...
Применение многогранников в действительности Интересно, что пчелиные ячейки,...
Многогранность в архитектуре Великая пирамида в Гизе. Эта грандиозная Египетс...
Вечные строения Во всем облике японского строения очевидна идея преобразовани...
Алмаз-многогранник! Алмаз (от араб. ألماس‎‎, ’almās, тур. elmas, которое идёт...
Моделирование многогранников (учащимися )
1.Нужны ли правильные многогранники в жизни? 2.Знаете ли вы о полуправильных,...
Анализ. Опрос 11 класса показал, что ученики очень мало знают о назначении мн...
Вывод: Наша гипотеза подтвердилась. По проведенной исследовательской работе...
1 из 29

Описание презентации по отдельным слайдам:

№ слайда 1 (исследовательская работа) Выполнили работу ученицы 10 «в» класса Брыгина Юл
Описание слайда:

(исследовательская работа) Выполнили работу ученицы 10 «в» класса Брыгина Юлия и Еремеева Татьяна. Руководитель-Макарова Эльвира Викентьевна.

№ слайда 2 Цель работы: Изучить правильные многогранники. И ознакомиться с материалами,
Описание слайда:

Цель работы: Изучить правильные многогранники. И ознакомиться с материалами, выходящих за пределы страниц учебника. Наши задачи: 1. Подробнее ознакомиться с видами многогранников. 2.Развитие пространственного мышления, применение задач. 3.Применение многогранников в действительности. 4.Узнать-нужно ли изучать многогранники.

№ слайда 3 Гипотеза Наша гипотеза заключается в том, что наш мир не может существовать б
Описание слайда:

Гипотеза Наша гипотеза заключается в том, что наш мир не может существовать без многогранников, и очень важна их роль.

№ слайда 4 Виды многогранников правильные звездчатые полуправильные
Описание слайда:

Виды многогранников правильные звездчатые полуправильные

№ слайда 5 Что же такое правильный многогранник? Многогранник называется правильным, есл
Описание слайда:

Что же такое правильный многогранник? Многогранник называется правильным, если: 1) он выпуклый; 2) все его грани – равные друг другу правильные многоугольники; 3) в каждой его вершине сходится одинаковое число ребер; 4) все его двугранные равны. Примером правильного многогранника является куб: он является выпуклым многогранником, все его грани – равные квадраты, в каждой вершине сходятся три ребра, и все двугранные углы куба прямые. Правильный тетраэдр также является правильным многогранником.

№ слайда 6 Возникает вопрос: сколько существует различных типов правильных многограннико
Описание слайда:

Возникает вопрос: сколько существует различных типов правильных многогранников? Существуют всего пять видов правильных многогранников

№ слайда 7 Тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершин
Описание слайда:

Тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Сумма плоских углов при каждой вершине равна 180 градусов. Таким образом, тетраэдр имеет 4 грани, 4 вершины и 6 ребер. Элементы симметрии: Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

№ слайда 8 Куб составлен из шести квадратов. Каждая его вершина является вершиной трех
Описание слайда:

Куб составлен из шести квадратов. Каждая его вершина является вершиной трех квадратов. Сумма плоских углов при каждой вершине равна 270 градусов. Таким образом, куб имеет 6 граней, 8 вершин и 12 ребер. Элементы симметрии: Куб имеет центр симметрии - центр куба, 9 осей симметрии и 9 плоскостей симметрии.

№ слайда 9 Октаэдр составлен из восьми равносторонних треугольников. Каждая его вершина
Описание слайда:

Октаэдр составлен из восьми равносторонних треугольников. Каждая его вершина является вершиной четырех треугольников. Сумма плоских углов при каждой вершине равна 240 градусов. Таким образом, октаэдр имеет 8 граней, 6 вершин и 12 ребер. Элементы симметрии: Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

№ слайда 10 Икосаэдр составлен из двадцати равносторонних треугольников. Каждая его верш
Описание слайда:

Икосаэдр составлен из двадцати равносторонних треугольников. Каждая его вершина является вершиной пяти треугольников. Сумма плоских углов при каждой вершине равна 300 градусов. Таким образом икосаэдр имеет 20 граней, 12 вершин и 30 ребер.

№ слайда 11 Додекаэдр составлен из двенадцати равносторонних пятиугольников. Каждая его в
Описание слайда:

Додекаэдр составлен из двенадцати равносторонних пятиугольников. Каждая его вершина является вершиной трех пятиугольников. Сумма плоских углов при каждой вершине равна 324 градусов. Таким образом, додекаэдр имеет 12 граней, 20 вершин и 30 ребер. Элементы симметрии: Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии.

№ слайда 12
Описание слайда:

№ слайда 13 Полуправильные многогранники Выпуклый многогранник, гранями которого являются
Описание слайда:

Полуправильные многогранники Выпуклый многогранник, гранями которого являются правильные многогранники, причем в каждой вершине сходится одинаковое число граней. Представителями таких многогранников является призма, антипризма, бипирамида и т.д.Кросе этих двух бесконечных серий полуправильных многогранников имеются еще только 14 полуправильных многогранников, 13 из которых впервые открыл и описал Архимед. Поэтому эти полуправильные многогранники называются также телами Архимеда.

№ слайда 14
Описание слайда:

№ слайда 15 Что скрывается под звездчатыми многогранниками? Звездчатые многогранники явля
Описание слайда:

Что скрывается под звездчатыми многогранниками? Звездчатые многогранники являются продолжением правильных многогранников. Правильные звездчатые многогранники называются телами Кеплера-Пуансо. Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они в архитектуре. Многие формы звездчатых многогранников показывает сама природа. Снежинки- это звездчатые многогранники.

№ слайда 16
Описание слайда:

№ слайда 17
Описание слайда:

№ слайда 18 Развитие пространственного мышления в решениях задач. Модель молекулы метана
Описание слайда:

Развитие пространственного мышления в решениях задач. Модель молекулы метана CH4 имеет форму правильного тетраэдра, в четырех вершинах которого находятся атомы водорода, а в центре - атом углерода. Определить угол связи между двумя СН связями. Задача.

№ слайда 19 Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно подоб
Описание слайда:

Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно подобрать такой куб, чтобы диагонали его граней были ребрами правильного тетраэдра (рис.2). Центр куба является и центром тетраэдра, ведь четыре вершины тетраэдра являются и вершинами куба, а описываемая около них сфера однозначно определяется четырьмя точками, не лежащими в одной плоскости. Искомый угол j между двумя СН связями равен углу АОС. Треугольник АОС-равнобедренный. Отсюда , где а - сторона куба, d- длина диагонали боковой грани или ребро тетраэдра. Итак, , откуда =54,73561О и j= 109,47О

№ слайда 20 Применение многогранников в действительности Интересно, что пчелиные ячейки,
Описание слайда:

Применение многогранников в действительности Интересно, что пчелиные ячейки, которые также заполняют пространство без просветов, также являются в идеале геометрическими фигурами. Верхняя часть пчелиной ячейки представляет собой часть ромбододекаэдра.

№ слайда 21 Многогранность в архитектуре Великая пирамида в Гизе. Эта грандиозная Египетс
Описание слайда:

Многогранность в архитектуре Великая пирамида в Гизе. Эта грандиозная Египетская пирамида является древнейшим из Семи чудес древности. Кроме того, это единственное из чудес, сохранившееся до наших дней. Во времена своего создания Великая пирамида была самым высоким сооружением в мире. И удерживала она этот рекорд, по всей видимости, почти 4000 л

№ слайда 22 Вечные строения Во всем облике японского строения очевидна идея преобразовани
Описание слайда:

Вечные строения Во всем облике японского строения очевидна идея преобразования пространства, подчинения его новой логике - логике "завоевания" природного ландшафта, которому противопоставлена четкая геометрия проникающих архитектурных форм. Как объясняет создатель Музея Плодов в Яманаши Ицуко Хасегава, одна из немногих преуспевающих японских женщин-архитекторов, "геометрия трех оболочек была проанализирована с помощью объемных компьютерных построений. Каждая форма была образована путем вращения простых геометрических форм до получения сложных объемов

№ слайда 23 Алмаз-многогранник! Алмаз (от араб. ألماس‎‎, ’almās, тур. elmas, которое идёт
Описание слайда:

Алмаз-многогранник! Алмаз (от араб. ألماس‎‎, ’almās, тур. elmas, которое идёт через арабск. из др.-греч. ἀδάμας — «несокрушимый») — минерал, одна из аллотропных форм углерода. Главные отличительные черты алмаза — высочайшая среди минералов твёрдость, наиболее высокая теплопроводность среди всех твёрдых тел, большие показатель преломления и дисперсия. Алмаз является диэлектриком. В 1961 году появились первые публикации фирмы «DuPont» о реализации идей получения алмаза путём прямого фазового перехода из графита. Алмаз уже многие столетия является популярнейшим и дорогим драгоценным камнем. В то время как цена других драгоценных камней определяется модой и постоянно меняется, алмаз остаётся островком стабильности на бурном рынке драгоценностей. Форма огранки бриллианта зависит от формы исходного кристалла алмаза. Чтобы получить бриллиант максимальной стоимости, огранщики стараются свести к минимум потери алмаза при обработке. Алмаз — редкий, но вместе с тем довольно широко распространённый минерал. Промышленные месторождения алмазов известны на всех континентах, кроме Антарктиды. Известно несколько видов месторождений алмазов. Уже несколько тысяч лет назад алмазы в промышленных масштабах добывались из россыпных месторождений. Только к концу XIX века, когда впервые были открыты алмазоносные кимберлитовые трубки, стало ясно, что алмазы не образуются в речных отложениях.

№ слайда 24
Описание слайда:

№ слайда 25 Моделирование многогранников (учащимися )
Описание слайда:

Моделирование многогранников (учащимися )

№ слайда 26 1.Нужны ли правильные многогранники в жизни? 2.Знаете ли вы о полуправильных,
Описание слайда:

1.Нужны ли правильные многогранники в жизни? 2.Знаете ли вы о полуправильных, звездчатых многогранниках? 3.Встречались ли тебе многогранники в жизни? 4.Как вы думаете, важно ли их использование в окружающей среде?

№ слайда 27 Анализ. Опрос 11 класса показал, что ученики очень мало знают о назначении мн
Описание слайда:

Анализ. Опрос 11 класса показал, что ученики очень мало знают о назначении многогранников в жизни человека. Учениками усвоен материал геометрии в пределах учебника. На вопрос-знаете ли вы о полуправильных, звездчатых многогранниках?- ответы были отрицательные. Мы думаем, что ученики лишь познали самую малейшую и важную часть темы «многогранники», которая в ходит в учебник геометрии, и не каждый изучает самостоятельно тему «многогранники».

№ слайда 28 Вывод: Наша гипотеза подтвердилась. По проведенной исследовательской работе
Описание слайда:

Вывод: Наша гипотеза подтвердилась. По проведенной исследовательской работе можно сказал, что мы, выполнив поставленные задачи и добившись цели, выяснили: что, действительно, многогранники играет не мало важную роль в окружающей среде и также важно их использование. Непосредственно, тема - изучении многогранников занимает одну из волнующих тем - удобств и нужд людей в действительности. Этой работой мы хотим заинтересовать всех, и дать возможность открыть тайны неизвестного.

№ слайда 29
Описание слайда:


Автор
Дата добавления 26.09.2015
Раздел Математика
Подраздел Презентации
Просмотров208
Номер материала ДВ-011108
Получить свидетельство о публикации

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх