1066735
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 1.410 руб.;
- курсы повышения квалификации от 430 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 90%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до конца апреля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

ИнфоурокМатематикаПрезентацииПрезентация 2 к теме урока " Правильные многогранники"

Презентация 2 к теме урока " Правильные многогранники"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
ОБЪЁМНЫЕ ТЕЛА И МНОГОГРАННИКИ Демонстрационный материал к уроку геометрии в 9...
Объёмные тела Оглянись вокруг себя, и ты всюду обнаружишь объёмные тела. Это...
Многогранники Тело, которое ограничено плоскими многоугольниками, называется...
Многогранники
Элементы многогранника Грани: АBСD, АА1В1В, АА1D1D, СС1В1В, СС1D1D, А1В1С1D1...
Выпуклые и невыпуклые многоугольники Многоугольники, как мы уже знаем, бывают...
ПИРАМИДА
Многогранники. Пирамида. Многогранник справа имеет специальное название: прав...
Историческая справка Еги́петские пирами́ды — величайшие архитектурные памятни...
Пирамида Пирамида это многогранник, одна грань которого является произвольным...
Треугольная пирамида HXYZ — треугольная пирамида. У неё четыре грани (один тр...
Четырёхугольная пирамида GRSTQ — четырёхугольная пирамида. У неё пять граней...
Пятиугольная пирамида PKLMNO — пятиугольная пирамида. У неё шесть граней: в о...
Невыпуклая пирамида На рисунке слева расположена невыпуклая пятиугольная пира...
Некоторые из многогранников на рисунке являются пирамидами, а некоторые — нет...
Правильная пирамида Пирамида называется правильной, если ее основание – прави...
ПРИЗМА
ПРИЗМА - - это многогранник, состоящий из двух равных многоугольников (основа...
Площадь поверхности призмы и площадь боковой поверхности призмы. Поверхность...
Параллелепипед и куб Параллелепипед тоже является призмой, в основании которо...

Описание презентации по отдельным слайдам:

1 слайд ОБЪЁМНЫЕ ТЕЛА И МНОГОГРАННИКИ Демонстрационный материал к уроку геометрии в 9
Описание слайда:

ОБЪЁМНЫЕ ТЕЛА И МНОГОГРАННИКИ Демонстрационный материал к уроку геометрии в 9 классе

2 слайд Объёмные тела Оглянись вокруг себя, и ты всюду обнаружишь объёмные тела. Это
Описание слайда:

Объёмные тела Оглянись вокруг себя, и ты всюду обнаружишь объёмные тела. Это такие геометрические фигуры, которые имеют три измерения: длину, ширину и высоту. Например, чтобы представить многоэтажный дом, достаточно сказать: "Этот дом длиной в три подъезда, шириной в два окна и высотой в шесть этажей". Известные тебе из начальной школы прямоугольный параллелепипед и куб полностью описываются тремя измерениями. Все окружающие нас предметы имеют три измерения, но далеко не у всех можно назвать длину, ширину и высоту. Например, для дерева мы можем указать только высоту, для верёвки – длину, для ямы – глубину. А для шара? Имеет ли он тоже три измерения? Мы говорим, что тело имеет три измерения (является объёмным), если в него можно поместить кубик или шарик.

3 слайд Многогранники Тело, которое ограничено плоскими многоугольниками, называется
Описание слайда:

Многогранники Тело, которое ограничено плоскими многоугольниками, называется многогранником. Многоугольники, образующие поверхность многогранника, называются гранями. Стороны этих многоугольников — рёбра многогранников. Вершины многоугольников — вершины многогранников.

4 слайд Многогранники
Описание слайда:

Многогранники

5 слайд Элементы многогранника Грани: АBСD, АА1В1В, АА1D1D, СС1В1В, СС1D1D, А1В1С1D1
Описание слайда:

Элементы многогранника Грани: АBСD, АА1В1В, АА1D1D, СС1В1В, СС1D1D, А1В1С1D1 Ребра: АB, ВС, СD, DA, АА1, ВВ1, СС1 , DD1, А1В1 , В1С1, С1D1 , D1A1 Вершины: А, B, С, D, А1, В1, С1, D1 В 1 А В С С 1 D 1 D A 1

6 слайд Выпуклые и невыпуклые многоугольники Многоугольники, как мы уже знаем, бывают
Описание слайда:

Выпуклые и невыпуклые многоугольники Многоугольники, как мы уже знаем, бывают выпуклые и невыпуклые. Выпуклый многоугольник лежит по одну сторону от любой прямой, содержащей любую сторону многоугольника. А у невыпуклого можно найти такую сторону, что содержащая её прямая "разрежет" многоугольник на части. На рисунке жёлтый многоугольник — выпуклый, а голубой — невыпуклый. Многогранники тоже бывают выпуклыми и невыпуклыми. Выпуклый многогранник лежит по одну сторону от любой плоскости, содержащей любую его грань. А у невыпуклого многогранника можно отыскать такую грань, что проходящая через неё плоскость "разрежет" его на части. Жёлтый многогранник на рисунке — выпуклый. Голубой многогранник — невыпуклый. Под какими номерами на рисунке изображены выпуклые многогранники, а под какими — невыпуклые?

7 слайд ПИРАМИДА
Описание слайда:

ПИРАМИДА

8 слайд Многогранники. Пирамида. Многогранник справа имеет специальное название: прав
Описание слайда:

Многогранники. Пирамида. Многогранник справа имеет специальное название: правильная четырёхугольная пирамида. Именно такую форму имеет знаменитая пирамида Хеопса: в её основании лежит квадрат, а боковые грани — равные треугольники. Сколько граней, рёбер и вершин у этого многогранника? Некоторые из фигур на картинке являются многогранниками, а некоторые — нет. Под какими номерами изображены многогранники?

9 слайд Историческая справка Еги́петские пирами́ды — величайшие архитектурные памятни
Описание слайда:

Историческая справка Еги́петские пирами́ды — величайшие архитектурные памятники Древнего Египта, среди которых одно из «семи чудес света» — пирамида Хеопса. Пирамиды представляют собой огромные каменные сооружения пирамидальной формы, использовавшиеся в качестве гробниц для фараонов Древнего Египта. Слово «пирамида» — греческое. По мнению одних исследователей, большая куча пшеницы и стала прообразом пирамиды. По мнению других учёных, это слово произошло от названия поминального пирога пирамидальной формы. Всего в Египте около 100 пирамид

10 слайд Пирамида Пирамида это многогранник, одна грань которого является произвольным
Описание слайда:

Пирамида Пирамида это многогранник, одна грань которого является произвольным многоугольником (треугольником, или четырёхугольником, или пятиугольником, или шестиугольником и т.д.), а остальные грани — треугольники с общей вершиной. При этом, одна его грань — произвольный многоугольник — называется основанием, а остальные грани — треугольники с общей вершиной — называются боковыми гранями. Стороны боковых граней называются боковыми рёбрами. Общая вершина боковых граней называется вершиной пирамиды.

11 слайд Треугольная пирамида HXYZ — треугольная пирамида. У неё четыре грани (один тр
Описание слайда:

Треугольная пирамида HXYZ — треугольная пирамида. У неё четыре грани (один треугольник в основании и три треугольника — боковые грани), шесть рёбер и четыре вершины. В качестве основания можно рассматривать любую его грань, например, треугольник XYZ. Тогда точка H будет вершиной пирамиды. Треугольники XYH, YZH и ZXH — боковые грани пирамиды. Отрезки XH, YH и ZH — боковые рёбра пирамиды.

12 слайд Четырёхугольная пирамида GRSTQ — четырёхугольная пирамида. У неё пять граней
Описание слайда:

Четырёхугольная пирамида GRSTQ — четырёхугольная пирамида. У неё пять граней (четырёхугольник RSTQ в основании и четыре боковых грани — треугольники GRS, GST, GTQ и GQR), восемь рёбер (отрезки RS, ST, TQ и QR — рёбра в основании, отрезки GR, GS, GT и GQ — боковые рёбра) и пять вершин. Точка G — вершина пирамиды.

13 слайд Пятиугольная пирамида PKLMNO — пятиугольная пирамида. У неё шесть граней: в о
Описание слайда:

Пятиугольная пирамида PKLMNO — пятиугольная пирамида. У неё шесть граней: в основании лежит пятиугольник KLMNO, а треугольники PKL, PLM, PMN, PNO и POK — боковые грани. Эта пирамида имеет десять рёбер: отрезки KL, LM, MN, NO и OK — рёбра в основании, отрезки PK, PL, PM, PN и PO — боковые рёбра) и шесть вершин (точки P, K, L, M, N и O). Точка P— вершина пирамиды.

14 слайд Невыпуклая пирамида На рисунке слева расположена невыпуклая пятиугольная пира
Описание слайда:

Невыпуклая пирамида На рисунке слева расположена невыпуклая пятиугольная пирамида. В её основании лежит невыпуклый пятиугольник. Все пирамиды на рисунках выше являются выпуклыми.

15 слайд Некоторые из многогранников на рисунке являются пирамидами, а некоторые — нет
Описание слайда:

Некоторые из многогранников на рисунке являются пирамидами, а некоторые — нет. Под какими номерами изображены пирамиды?

16 слайд Правильная пирамида Пирамида называется правильной, если ее основание – прави
Описание слайда:

Правильная пирамида Пирамида называется правильной, если ее основание – правильный многоугольник OK – высота пирамиды ON – апофема

17 слайд ПРИЗМА
Описание слайда:

ПРИЗМА

18 слайд ПРИЗМА - - это многогранник, состоящий из двух равных многоугольников (основа
Описание слайда:

ПРИЗМА - - это многогранник, состоящий из двух равных многоугольников (основания призмы) и параллелограммов (боковые грани призмы). Например, на рисунке справа расположена шестиугольная призма: в её основаниях — два равных шестиугольника, боковые грани — шесть параллелограммов. Если все боковые грани призмы не просто параллелограммы, а прямоугольники, то такой многогранник называется прямой призмой. У прямой призмы боковые рёбра перпендикулярны основанию. Призма на рисунке слева является невыпуклой. Её основания — невыпуклые пятиугольники. В отличие от неё все призмы на рисунках выше являются выпуклыми. Наклонная шестиугольная призма Прямая призма

19 слайд Площадь поверхности призмы и площадь боковой поверхности призмы. Поверхность
Описание слайда:

Площадь поверхности призмы и площадь боковой поверхности призмы. Поверхность многогранника состоит из конечного числа многоугольников (граней). Площадь поверхности многогранника есть сумма площадей всех его граней. Площадь поверхности призм (Sпр) равна сумме площадей ее боковых граней (площади боковой поверхности Sбок) и площадей двух оснований (2Sосн) - равных многоугольников: Sпов=Sбок+2Sосн. Sпов=Sбок+2Sосн

20 слайд Параллелепипед и куб Параллелепипед тоже является призмой, в основании которо
Описание слайда:

Параллелепипед и куб Параллелепипед тоже является призмой, в основании которой лежит параллелограмм. Противолежащие грани параллелепипеда равны. Если все грани параллелепипеда не просто параллелограммы, а прямоугольники, то такой многогранник называется прямоугольным параллелепипедом. Такую форму обычно имеют коробки, комнаты, книги. Если все грани параллелепипеда — равные квадраты, то такое тело называется кубом. Все двенадцать рёбер куба — равные отрезки.

Общая информация

Номер материала: ДБ-031035

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.