Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация к уроку алгебры «Приёмы решения целых уравнений» (9 класс)

Презентация к уроку алгебры «Приёмы решения целых уравнений» (9 класс)

Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

К ОПЛАТЕ ЗА ОДНОГО УЧЕНИКА: ВСЕГО 28 РУБ.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика
Тема: «Приёмы решения целых уравнений»
Цель урока: Познакомить учащихся с различными способами решения уравнений выс...
Задачи урока: 1. Способствовать развитию навыка решения уравнений высших степ...
Уравнения Уравнения высших степеней
Я уверена, что вы решите все эти уравнения!!! Дерзайте!!!
5х-2=3 4(х+2)=4х-1 -6х+1=5(0,2-1,2х) 1 Корней нет Бесконечно много
 х2+7х+10=0 3х2-7х+4=0 	 4х2+6х+3=0 -2; -5 1; 4/3 Корней нет
6х2-2х=0 5х2+1=0 3х2-27=0 0; 1/3 Корней нет 3; -3
Уравнения, решаемые с помощью теоремы Безу. Теорема Безу. Остаток от деления...
Уравнения, решаемые с помощью теоремы Безу. Решите уравнение: х4+х3+х2+3х+2=0...
Графический способ решения. Идея метода проста. Нужно представить уравнение в...
Безу Этьенн (31.3.1739-27.9.1783)-французский математик, член Парижской Акад...
Во Франции и за ее пределами до 1848г. был очень популярен его шести томный...
Ответы к самостоятельной работе I вариант: На «3»: 3 На «4»: -3;-1 На «5»: -1...
На «3» - № 194, 195, 233. На «4» - № 197, 234. На «5» - №198, 199(г,д), 235....
1 из 17

Описание презентации по отдельным слайдам:

№ слайда 1 Тема: «Приёмы решения целых уравнений»
Описание слайда:

Тема: «Приёмы решения целых уравнений»

№ слайда 2 Цель урока: Познакомить учащихся с различными способами решения уравнений выс
Описание слайда:

Цель урока: Познакомить учащихся с различными способами решения уравнений высших степеней.

№ слайда 3 Задачи урока: 1. Способствовать развитию навыка решения уравнений высших степ
Описание слайда:

Задачи урока: 1. Способствовать развитию навыка решения уравнений высших степеней; 2. Развивать позитивные индивидуальные способности учащихся, интеллектуальную исследовательскую культуру; 3. Развивать умение выполнять самоконтроль и самооценку.

№ слайда 4 Уравнения Уравнения высших степеней
Описание слайда:

Уравнения Уравнения высших степеней

№ слайда 5 Я уверена, что вы решите все эти уравнения!!! Дерзайте!!!
Описание слайда:

Я уверена, что вы решите все эти уравнения!!! Дерзайте!!!

№ слайда 6 5х-2=3 4(х+2)=4х-1 -6х+1=5(0,2-1,2х) 1 Корней нет Бесконечно много
Описание слайда:

5х-2=3 4(х+2)=4х-1 -6х+1=5(0,2-1,2х) 1 Корней нет Бесконечно много

№ слайда 7  х2+7х+10=0 3х2-7х+4=0 	 4х2+6х+3=0 -2; -5 1; 4/3 Корней нет
Описание слайда:

х2+7х+10=0 3х2-7х+4=0 4х2+6х+3=0 -2; -5 1; 4/3 Корней нет

№ слайда 8 6х2-2х=0 5х2+1=0 3х2-27=0 0; 1/3 Корней нет 3; -3
Описание слайда:

6х2-2х=0 5х2+1=0 3х2-27=0 0; 1/3 Корней нет 3; -3

№ слайда 9
Описание слайда:

№ слайда 10 Уравнения, решаемые с помощью теоремы Безу. Теорема Безу. Остаток от деления
Описание слайда:

Уравнения, решаемые с помощью теоремы Безу. Теорема Безу. Остаток от деления многочлена Р(х) на двучлен (х - а) равен значению многочлена при х = а Р(х)=(х - а)P1(х)+R, где R= P(a) Следствие: Если а - корень многочлена Р(х), то этот многочлен без остатка делится на двучлен (х – а) Следствие: Целые корни уравнения n – ой степени могут быть только среди делителей свободного члена

№ слайда 11 Уравнения, решаемые с помощью теоремы Безу. Решите уравнение: х4+х3+х2+3х+2=0
Описание слайда:

Уравнения, решаемые с помощью теоремы Безу. Решите уравнение: х4+х3+х2+3х+2=0 Ответ: х = -1

№ слайда 12 Графический способ решения. Идея метода проста. Нужно представить уравнение в
Описание слайда:

Графический способ решения. Идея метода проста. Нужно представить уравнение в виде f(x)=g(x), гдеf(x) и g(x)-функции, графики которых мы умеем строить. Затем построить эти графики в одной координатной плоскости и найти точки их пересечения. Абсциссы этих точек будут корнями уравнения Возьмем уравнение x3+х2-2х-7=0 Решим его графическим методом. Представим уравнение в виде f(x)=g(x) , тогда уравнение примет вид х3=-х2+2х+7. Построим графики функций y=x3 и y=-x2+2x+7. Графики пересекаются в одной точке. Ее абсцисса х 1,9. Ответ: х 1,9

№ слайда 13 Безу Этьенн (31.3.1739-27.9.1783)-французский математик, член Парижской Акад
Описание слайда:

Безу Этьенн (31.3.1739-27.9.1783)-французский математик, член Парижской Академии Наук (1758г.). Родился в Немуре. С 1763г. преподавал математику в училище гардемаринов, а с 1768г. также в Королевском артиллерийском корпусе. Основные труды по высшей алгебре.

№ слайда 14 Во Франции и за ее пределами до 1848г. был очень популярен его шести томный
Описание слайда:

Во Франции и за ее пределами до 1848г. был очень популярен его шести томный "Курс математики" (1764-1769гг.). Именем Безу названа одна из основных теорем алгебры. Безу развил метод неопределенных множителей: в элементарной алгебре его именем назван способ решения систем уравнений, основанный на этом методе. Часть трудов Безу посвящена внешней баллистике.

№ слайда 15 Ответы к самостоятельной работе I вариант: На «3»: 3 На «4»: -3;-1 На «5»: -1
Описание слайда:

Ответы к самостоятельной работе I вариант: На «3»: 3 На «4»: -3;-1 На «5»: -1 II вариант На «3»: -1 На «4»: 1;(-3+ )/2; ;(-3- )/2 На «5»: 2

№ слайда 16 На «3» - № 194, 195, 233. На «4» - № 197, 234. На «5» - №198, 199(г,д), 235.
Описание слайда:

На «3» - № 194, 195, 233. На «4» - № 197, 234. На «5» - №198, 199(г,д), 235. Выучить и записать в тетрадь Теорему Безу и следствия.

№ слайда 17
Описание слайда:

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy



Автор
Дата добавления 26.01.2016
Раздел Математика
Подраздел Презентации
Просмотров252
Номер материала ДВ-379592
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх