Рабочие листы
к вашим урокам
Скачать
1 слайд
Опорное повторение по готовым чертежам
Какой треугольник изображён?
(Определите его вид)
Назовите катеты и гипотенузу данного треугольника.
В
А
С
2 слайд
Теорема
Пифагора
3 слайд
Историческая справка
Пифагор – древнегреческий ученый, живший в VI веке до нашей эры.
Вообще надо заметить, что о жизни и деятельности Пифагора, который умер две с половиной тысячи лет тому назад, нет достоверных сведений. Биографию учёного и его труды приходится реконструировать по произведениям других античных авторов, а они часто противоречат друг другу.
4 слайд
С именем Пифагора связано много важных научных открытий: в географии и астрономии – представление о том, что Земля – шар и что существуют другие, похожие на неё миры; в музыке – зависимость между длиной струны арфы и звуком, который она издаёт; в геометрии – построение правильных многоугольников (один из них пятиконечная звезда – стал символом пифагорейцев).
Венчала геометрию теорема Пифагора, которой посвящён сегодняшний урок.
Но изучение вавилонских клинописных таблиц и древних китайских рукописей показало, что это утверждение было известно задолго до Пифагора. Заслуга же Пифагора состояла в том, что он открыл доказательство этой теоремы.
5 слайд
Практическая работа
Постройте в тетрадях прямоугольный треугольник (с катетами, длина которых для удобства выражается целыми числами).
Измерьте катеты и гипотенузу. Результаты измерений запишите в тетрадях.
Возведите все результаты в квадрат, т. е. Узнайте величины a2; b2; c2.
Сложите квадраты катетов (a2 + b2) и сравните с квадратом гипотенузы.
У всех ли получилось, что a2 + b2 = с2?
6 слайд
«Квадрат, построенный на гипотенузе прямо-угольного треугольника, равновелик сумме квадратов, построенных на катетах».
«В прямоугольном
треугольнике квадрат
гипотенузы равен
сумме квадратов катетов».
Во времена Пифагора формулировка теоремы звучала так:
Современная формулировка
теоремы Пифагора
7 слайд
Теорема Пифагора
25=16+9
5 = 4 + 3
2
2
2
9
25
16
Площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.
8 слайд
1.
Найти: ВС
С
В
А
Дано:
8 см
6 см
?
9 слайд
2.
Дано:
С
В
Найти: ВС
А
5 см
7 см
?
10 слайд
3.
Дано:
Найти:
А
B
C
D
?
12 см
13 см
11 слайд
Пифагоровы штаны
12 слайд
A
B
C
«Пифагоровы штаны во все стороны равны. Чтобы это доказать, нужно снять и показать», -так поется в одной шутливой песенке. Эти «штаны» показаны на рисунке, где на каждой стороне прямоугольного треугольника АВС во внешнюю сторону построены квадраты. А сам рисунок появился в знаменитой первой книге трактата Евклида «Начала»и был положен ее автором в основу доказательства теоремы Пифагора.
В англоязычных странах ее называют ветряной мельницей, павлиньим хвостом и креслом невесты.
13 слайд
Шаржи к теореме Пифагора
(из учебников XVI века)
14 слайд
Пифагоровы тройки
15 слайд
Изучение свойств натуральных чисел привело пифагорейцев к ещё одной «вечной» проблеме теоретической арифметики (теории чисел) — проблеме, ростки которой пробивались задолго до Пифагора в Древнем Египте и Древнем Вавилоне, а общее решение не найдено и поныне. Начнем с задачи, которую в современных терминах можно сформулировать так: решить в натуральных числах неопределенное уравнение
а2+b2=c2.
15
16 слайд
Сегодня эта задача именуется задачей Пифагора, а её решения — тройки натуральных чисел, удовлетворяющих уравнению (а2+b2=c2)— называются пифагоровыми тройками. В силу очевидной связи теоремы Пифагора с задачей Пифагора последней можно дать геометрическую формулировку: найти все прямоугольные треугольники с целочисленными катетами а, b и целочисленной гипотенузой c.
16
17 слайд
Эти тройки можно найти по формулам:
b=(a2-1)/2, c=(a2+1)/2.
Пифагоровы числа обладают рядом интересных особенностей, которые мы перечислим без доказательств:
Один из «катетов» должен быть кратным трём.
Один из «катетов» должен быть кратным четырём.
Одно из пифагоровых чисел должно быть кратно пяти.
17
18 слайд
из 9
4
3
6
5
8
4
3
3
3
15
36
3
3
3
1,5
2
Найдите неизвестные стороны треугольников.
19 слайд
Практическое применение
теоремы Пифагора
19
20 слайд
21 слайд
Теорема Пифагора
В литературе
21
22 слайд
Если дан нам треугольник
И притом с прямым углом,
То квадрат гипотенузы
Мы всегда легко найдем:
Катеты в квадрат возводим,
Сумму степеней находим —
И таким простым путем
К результату мы придем.
И. Дырченко
23 слайд
О теореме Пифагора
Пребудет вечной истина, как скоро
Все познает слабый человек!
И ныне теорема Пифагора
Верна, как и в его далекий век.
Обильно было жертвоприношенье
Богам от Пифагора. Сто быков
Он отдал на закланье и сожженье
За света луч, пришедший с облаков.
Поэтому всегда с тех самых пор,
Чуть истина рождается на свет,
Быки ревут, ее почуя, вслед.
Они не в силах свету помешать,
А могут лишь закрыв глаза дрожать
От страха, что вселил в них Пифагор.
A.Шамиссо
24 слайд
Над озером тихим
С полфута размером
Высился лотоса цвет.
Он рос одиноко,
И ветер порывом
Отнёс его в сторону. Нет
Боле цветка над водой.
Нашёл же рыбак его
Ранней весною
В двух футах от места, где рос.
Итак, предложу я вопрос:
“Как озера вода здесь глубока?”
Древнеиндийская задача
24
25 слайд
На берегу реки рос тополь одинокий. Вдруг ветра порыв его ствол надломал. Бедный тополь упал. И угол прямой с теченьем реки его ствол составлял. Запомни теперь, что в том месте река в четыре лишь фута была широка. Верхушка склонилась у края реки, осталось три фута всего от ствола. Прошу тебя, скоро теперь мне скажи: у тополя как велика высота?
Задача индийского
математика XII в. Бхаскары
25
26 слайд
Задача Бхаскары
Решение.
Пусть CD – высота ствола.
BD = АВ
По теореме Пифагора имеем АВ = 5 .
CD = CB + BD,
CD = 3 + 5 =8.
Ответ: 8 футов.
26
27 слайд
На обоих берегах реки растет по пальме, одна против другой. Высота одной 30 локтей, другой – 20 локтей. Расстояние между их основаниями – 50 локтей. На верхушке каждой пальмы сидит птица. Внезапно обе птицы заметили рыбу, выплывшую к поверхности воды между пальмами. Они кинулись к ней разом и достигли её одновременно. На каком расстоянии от основания более высокой пальмы появилась рыба?
Задача арабского математика XI в
27
28 слайд
Решение
Итак, в треугольнике АDВ: АВ2 =ВD2 +АD2
АВ2=302 +Х2
АВ2=900+Х2;
в треугольнике АЕС: АС2= СЕ2+АЕ2
АС2=202+(50 – Х)2
АС2=400+2500 – 100Х+Х2
АС2=2900 – 100Х+Х2.
Но АВ=АС, так как обе птицы пролетели эти расстояния за одинаковое время.
Поэтому АВ2 =АС2 ,
900+Х2 =2900 – 100Х+Х2,
100Х=2000,
Х=20,
АD=20.
Значит, рыба была на расстоянии 20 локтей от большой пальмы.
Ответ: 20 локтей.
28
29 слайд
"Случися некому человеку к стене лестницу прибрати, стены же тоя высота есть 117 стоп. И обреете лестницу долготью 125 стоп. И ведати хочет, колико стоп сея лестницы нижний конец от стены отстояти имать."
Задача из учебника
"Арифметика" Леонтия Магницкого
29
30 слайд
"Имеется водоем со стороной в 1 чжан = 10 чи. В центре его растет камыш, который выступает над водой на 1 чи. Если потянуть камыш к берегу, то он как раз коснётся его.
Спрашивается: какова глубина воды и какова длина камыша? "
Задача из китайской
"Математики в девяти книгах"
30
31 слайд
Д
Е
К
40 м
20 м
Х
100 м
А
В
32 слайд
Изречения Пифагора
Статуя формой своей хороша,
А человека украсят дела.
Шуткой беседу укрась, освети.
Шутка, что соль. Лишь не пересоли…
Лучше молчи, ну, а коль говоришь,
Пусть будет лучше, чем то, что молчишь.
Если ты в гневе, не смей говорить!
Действовать резко и злобу сорить.
Пред тем, как станешь говорить, пусть мысль созреет
Под языком твоим. Созревшая - все смеет.
33 слайд
Память.
Памятник Пифагору находится в порту города Пифагория и напоминает всем о теореме Пифагора, наиболее известном его открытии. Катет, лежащий в основании треугольника - мраморный , гипотенуза и фигура самого Пифагора в виде второго катета - медные.
Рабочие листы
к вашим урокам
Скачать
6 461 444 материала в базе
«Геометрия», Мерзляк А.Г., Полонский В.Б., Якир М.С./ Под ред. Подольского В.Е.
§ 16. Теорема Пифагора
Больше материалов по этой темеНастоящий материал опубликован пользователем Албычакова Валентина Вячеславовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Удалить материалВаша скидка на курсы
40%Курс профессиональной переподготовки
500/1000 ч.
Курс повышения квалификации
36 ч. — 144 ч.
Курс повышения квалификации
36 ч. — 180 ч.
Требования к руководителю туристической группы в учреждениях дополнительного образования
Юрисконсульт государственной и муниципальной службы: правовые основы противодействия коррупции и антикоррупционная политика
Основы психологического консультирования в спорте
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.