1144431
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 70%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаПрезентацииПрезентация к уроку геометрии в 10 классе на тему "Симметрия в пространстве"

Презентация к уроку геометрии в 10 классе на тему "Симметрия в пространстве"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.


Презентация


к уроку геометрии в 10 классе



«Симметрия в пространстве»




учитель бугаева О.В.


ГБОУ сош №532 г. Санкт-Петербург




hello_html_469bf989.jpg













«В мире многогранников, или еще раз о «Самых чудесных из всех видимых тел»


ГБОУ Средняя общеобразовательная школа №532 города Санкт-Петербург



hello_html_35ebd50a.png















в мире многогранников, или еще раз о «самых чудесных из всех видимых тел»


платоновы тела в философской картине мира…

Пhello_html_536369fd.pnghello_html_m22e69044.jpgлатон считал, что мир строится из четырех «стихий» – огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырех правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени. Икосаэдр – как самый обтекаемый – воду. Куб – самая «устойчивая» из фигур – землю. Октаэдр – воздух – как самый «воздушный» многогранник. Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода = воздух/огонь. Атомы «стихий» настраивались Платоном в совершенных консонансах. В наше время эту систему можно сравнить с четырьмя состояниями вещества – твердым, жидким, газообразным и плазменным. Пятый многогранник – додекаэдр – воплощал в себе «все сущее», символизировал весь мир и считался главной фигурой мироздания.

Немецкий астроном и математик Иоганн Кеплер предположил, что существует связь между пятью правильными многогранниками и шестью известными планетами Солнечной системы: Меркурием, Венерой, Землей, Марсом, Юпитером и Сатурном. Кеплер считал, что расстояния между планетами выражаются через размеры пяти правильных выпуклых многогранников. Между каждой парой небесных сфер, по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел («Космический кубок» Кеплера).


и в современной науке

«Земля, если взглянуть на нее сверху, похожа на мяч, сшитый из двенадцати кусков кожи...»

«Федон», Платон

Вhello_html_m3520bfb.jpg настоящее время довольно широкое распространение получила гипотеза, в соответствии с которой Земля представляет собой сложный многогранник и является огромным кристаллом. Впервые предположение о том, что Земля не шар, а кристалл – твердое тело, имеющее упорядоченное, симметричное строение, высказали греческие ученые: математик Пифагор и философ Платон. Они выбрали два многогранника, которые могли являться моделью Земли: икосаэдр, ограниченный двадцатью правильными пятиугольниками, и додекаэдр, ограниченный двенадцатью правильными пятиугольниками.

В дальнейшем идея представления Земли в форме кристалла, с помощью которого можно объяснить особенности ее внутреннего строения, привлекла в XIX веке двух французских ученых – геолога де Бемона и математика Анри Пуанкаре. По их мнению, крупные аномалии в мантии и земной коре обусловлены именно деформацией формы Земли в додекаэдр.

Вhello_html_m2e96a304.png России сторонником гипотезы «Земля – кристалл» стал С. С. Кислицын. По мнению ученого, около 400 – 500 миллионов лет назад, когда деформации подверглась геосфера, преимущественно состоявшая из базальта, додекаэдр перешел в икосаэдр, но этот переход не был полным. И додекаэдр, который напоминает футбольный мяч, сшитый из 12 пятиугольных лоскутов, оказался вписанным в сетку икосаэдра из 20 треугольных граней.

Практическое использование гипотезы «Земля – растущий кристалл» для объяснения не только процессов, идущих в недрах и на поверхности планеты, но и влияния этого на изменение живого мира и даже на развитие цивилизаций, предприняли еще в СССР в начале 80-х годов московские инженеры Н. Ф. Гончаров, В. А. Макаров, В. С. Морозов. Ученые утверждают, что в настоящее время процессы жизнедеятельности Земли имеют структуру додекаэдра-икосаэдра. Двадцать районов планеты (вершины додекаэдра) – центры поясов выходящего вещества, основывающих биологическую жизнь (флора, фауна, человек). Центры всех магнитных аномалий и магнитного поля планеты расположены в узлах системы треугольников.

Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки. 62 вершины и середины ребер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник.


правильные многогранники в природе


«Творения природы совершеннее творений искусства»

Марк Туллий Цицерон, древнеримский философ

Пhello_html_350dc339.jpgравильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Некоторые из Платоновых тел встречаются в природе в виде кристаллов, другие – в виде вирусов или простейших микроорганизмов.

На микроскопическом уровне додекаэдр и икосаэдр являются относительными параметрами ДНК. Можно увидеть, что молекула ДНК представляет собой вращающийся куб. При повороте куба последовательно на 72 градуса по определенной модели, получается икосаэдр, который, в свою очередь, составляет пару додекаэдру. Таким образом, двойная нить спирали ДНК построена по принципу двухстороннего соответствия: за икосаэдром следует додекаэдр, затем опять икосаэдр и так далее.

Вирусы, построенные из нуклеиновой кислоты и белка, представляют собой правильный двадцатигранник, или икосаэдр. Чтобы установить форму вируса, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень – икосаэдр.

Вhello_html_m20a4af56.pngирусная частица должна весь обмен клетки-хозяина перевернуть вверх дном; она должна заставить зараженную клетку синтезировать многочисленные ферменты и другие молекулы, необходимые для синтеза новых вирусных частиц. Все эти ферменты должны быть закодированы в вирусной нуклеиновой кислоте. Но количество ее ограничено. Поэтому для кодирования белков собственной оболочки в нуклеиновой кислоте вируса оставлено мало места. Что же делает вирус? Он просто использует много раз один и тот же участок нуклеиновой кислоты для синтеза большого числа стандартных молекул – строительных белков, объединяющихся в процессе автосборки вирусной частицы. В результате достигается максимальная экономия генетической информации. По законам математики для построения наиболее экономичным способом замкнутой оболочки из одинаковых элементов нужно сложить из них икосаэдр, который мы наблюдаем у вирусов. Так «решают» вирусы сложнейшую задачу: найти тело наименьшей поверхности при заданном объеме и притом состоящее из одинаковых и тоже простейших фигур.

Сhello_html_m1b805199.jpgкелет одноклеточного организма феодарии по форме напоминает икосаэдр. Такая природная геометризация феодарии вызвана тем, что из всех многогранников с тем же числом граней, именно икосаэдр имеет наибольший объем при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи.

Кhello_html_m5abd31c3.jpgуб передает форму кристаллов поваренной соли (NaCl). Форму октаэдра имеют монокристалл алюмокалиевых квасцов (K(AL(SO4)2)*12H2O), применяющихся для протравливания тканей и выделки кожи, и кристаллы алмаза. Кристалл пирита, или сернистый колчедан (FeS), – природная модель додекаэдра. Кристалл сурьменистого сернокислого натрия (Na5(SbO4(SO4)) имеет форму тетраэдра. Икосаэдр передает форму кристаллов бора (В).

Фуллерены – одна из форм углерода – тоже многогранники, составленные из четного числа трехкоординированных атомов углерода. Своим названием эти соединения обязаны инженеру и дизайнеру Ричарду Бакминстеру Фуллеру.


Платоновы тела в живописи и архитектуре

«Только неотступно следуя законам геометрии, архитекторы древности могли создать свои шедевры… Прошли века, но роль геометрии не изменилась. Она по-прежнему остается грамматикой архитектора»

Ле Корбюзье, французский архитектор

Многие художники разных эпох и стран испытывали интерес к изучению и изображению правильных многогранников. Пик этого интереса приходится на эпоху Возрождения. Для мастеров Возрождения правильные многогранники являлись эталоном симметрии и лаконичной красоты, воплощали в себе философские и мистические символы.

В 2009 году исполнилось 500 лет со времени выхода в свет книги Луки Пачоли «Божественная пропорция» и изобретения метода жестких ребер Леонардо да Винчи для ее иллюстрации. Книга Пачоли, для которой Леонардо выполнил 59 иллюстраций различных многогранников, оказала большое влияние на развитие геометрии того времени. Гравюру с изображением усеченного икосаэдра Леонардо предваряет надписью по латыни Ycocedron Abscisus (усеченный икосаэдр) Vacuus. Термин Vacuus обозначает тот факт, что грани многогранника изображены «пустыми» – не сплошными. Ребра многогранника изображены не геометрическими линиями, а жесткими трехмерными сегментами. Особенность данной гравюры составляет основу способа пространственного изображения многогранников, называемого сегодня методом жестких ребер. Такая техника позволяет, во-первых, безошибочно определить, какие из ребер принадлежат передним, а какие – задним граням многогранника, во-вторых, взглянуть сквозь геометрическое тело, ощутить его в перспективе, которая теряется при использовании техники сплошных граней.

Лhello_html_462d8f55.pngеонардо да Винчи изображал своим способом не только многогранники, но и, например, плотную упаковку кубов. Этим изображением Леонардо на три века предвосхитил гипотезу о периодическом строении кристаллов.

Вhello_html_1a72cc28.pnghello_html_887b6fc.jpg конце XV – начале XVI веков в северной Италии было популярно искусство интарсии – особого вида инкрустации, мозаики, собранной из тысяч мелких кусочков различных пород дерева. Два выдающихся образца этого искусства с изображением многогранников созданы Фра Джованни да Верона в 1520 году. Изображение полуоткрытых ставень создает эффект объемности на плоской мозаике, который усиливается изображением многогранников в разработанной Леонардо технике жестких ребер.

Ярчайшим примером художественного изображения многогранников в XX веке являются графические фантазии голландского художника Маурица Корнилиса Эшера. Художник исследует постепенность перехода от одной геометрической фигуры к другой, посредством незначительных изменений в очертаниях. Мауриц Эшер в своих рисунках проиллюстрировал законы сочетания элементов симметрии, которые властвуют над кристаллами, определяя их форму, атомную структуру и физические свойства.

Вhello_html_9b205dc.jpg качестве других, не менее ярких примеров изображения Платоновых тел, можно назвать титульный лист изданной во Франции в 1560 году «Книги о перспективе» Жана Кузена, памятник Томасу Джорджсу, установленный в 1635 году в кафедральном соборе в Солсбери и картина «Тайная вечеря» Сальвадора Дали.


многогранники в нетрадиционной медицине

По данным исследований российских ученых А. В. Скворцова и Е. В. Хмелинской, некоторые многогранники обладают свойствами гармонизации человека и пространства:

  • усеченный октаэдр нейтрализует энергетическое воздействие извне, повышает уровень энергетики головного мозга;

  • икосаэдр со стороной 5 см устраняет психологические зависимости, восстанавливает гармонию;

  • икосаэдр со стороной 3 см улучшает связь с подсознанием, гармонизирует взаимоотношения с другими людьми;

  • икосаэдр со стороной 1 см усиливает интеллект человека, повышает защитные силы организма.

Источники:

http://www.upakovano.ru/articles/1530

http://kztomsk.ru/index.phtml?p=archive&a=961

http://www.msun.ru

http://interaktiveboard.ru/load/4-1-0-92

http://licey102.k26.ru/dist-kurs/p16aa1.htm


http://www.polyhedron2008.narod.ru

http://www.b-i-o-n.ru/theory/magija-chisel



Общая информация

Номер материала: ДБ-378032

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.