Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация к уроку математики по теме "График квадратичной функции"

Презентация к уроку математики по теме "График квадратичной функции"


До 7 декабря продлён приём заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)

  • Математика
 График функции y=ax2+bx+c
Цель урока: Установить связь между функциями у=ax2 и y=ax2+bx+c. Разработать...
Нам необходимо знать: Построение графика у=ax2 Выделение полного квадрата. Из...
Выделение полного квадрата у = 2х2+4х+6 = = 2(х2+2х+3) = = 2((х2+2·х·1+1)-1+...
Введение новых переменных у = 2(х+1)2+4 		 у – 4 = 2(х+1)2 х + 1 = х1,		у - 4...
Построение графика в новых осях
Нахождение старых осей 1 -4 у1 х1 х у О1 О так как у – 4 = 2(х+1)2
Другой способ Можно сначала от старых осей перейти к новым, а затем в новых о...
Алгоритм построения Выделить полный квадрат Привести к виду у1 = ах12 Построи...
Каков порядок построения этих графиков? у = (х+5)2-3 У = 3(х-2)2+1 У = -2(х+1...
Подведем итоги Графиком функции y=ax2+bx+c является парабола, так как он полу...
Надеюсь, для любой квадратичной функции вы сможете построить соответствующую...
1 из 12

Описание презентации по отдельным слайдам:

№ слайда 1  График функции y=ax2+bx+c
Описание слайда:

График функции y=ax2+bx+c

№ слайда 2 Цель урока: Установить связь между функциями у=ax2 и y=ax2+bx+c. Разработать
Описание слайда:

Цель урока: Установить связь между функциями у=ax2 и y=ax2+bx+c. Разработать алгоритм построения графика функции y=ax2+bx+c.

№ слайда 3 Нам необходимо знать: Построение графика у=ax2 Выделение полного квадрата. Из
Описание слайда:

Нам необходимо знать: Построение графика у=ax2 Выделение полного квадрата. Изменение координат точки.

№ слайда 4 Выделение полного квадрата у = 2х2+4х+6 = = 2(х2+2х+3) = = 2((х2+2·х·1+1)-1+
Описание слайда:

Выделение полного квадрата у = 2х2+4х+6 = = 2(х2+2х+3) = = 2((х2+2·х·1+1)-1+3) = = 2(х+1)2+4. Итак, у = 2(х+1)2+4

№ слайда 5 Введение новых переменных у = 2(х+1)2+4 		 у – 4 = 2(х+1)2 х + 1 = х1,		у - 4
Описание слайда:

Введение новых переменных у = 2(х+1)2+4 у – 4 = 2(х+1)2 х + 1 = х1, у - 4 = у1. Получаем, у1 = 2х12

№ слайда 6 Построение графика в новых осях
Описание слайда:

Построение графика в новых осях

№ слайда 7 Нахождение старых осей 1 -4 у1 х1 х у О1 О так как у – 4 = 2(х+1)2
Описание слайда:

Нахождение старых осей 1 -4 у1 х1 х у О1 О так как у – 4 = 2(х+1)2

№ слайда 8 Другой способ Можно сначала от старых осей перейти к новым, а затем в новых о
Описание слайда:

Другой способ Можно сначала от старых осей перейти к новым, а затем в новых осях построить график.

№ слайда 9 Алгоритм построения Выделить полный квадрат Привести к виду у1 = ах12 Построи
Описание слайда:

Алгоритм построения Выделить полный квадрат Привести к виду у1 = ах12 Построить у1 = ах12 Перейти от старых осей к новым Построить старые оси Построить у1 = ах12

№ слайда 10 Каков порядок построения этих графиков? у = (х+5)2-3 У = 3(х-2)2+1 У = -2(х+1
Описание слайда:

Каков порядок построения этих графиков? у = (х+5)2-3 У = 3(х-2)2+1 У = -2(х+1)2+3 У = 0,5(х-4)2-15

№ слайда 11 Подведем итоги Графиком функции y=ax2+bx+c является парабола, так как он полу
Описание слайда:

Подведем итоги Графиком функции y=ax2+bx+c является парабола, так как он получен путем сдвига параболы у=ax2. Чтобы построить график функции y=ax2+bx+c нужно использовать разработанный алгоритм.

№ слайда 12 Надеюсь, для любой квадратичной функции вы сможете построить соответствующую
Описание слайда:

Надеюсь, для любой квадратичной функции вы сможете построить соответствующую ей параболу


57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)

Краткое описание документа:

Изучение квадратичной функции - большой блок материала курса математики в 8 классе. Умение строить график квадратичной функции (параболу) и совершать с ним преобразования - очень важный навык, который пригодится учащимся и при изучении математики в следующих классах и при изучении других смежных дисциплин.

В представленном материале рассматривается построение параболы с помощью выделения полного квадрата и построения новой системы координат. Отрабатывается алгоритм выделения полного квадрата в квадратном трехчлене, алгоритм построения параболы, алгоритм отыскания координат точки в новой системе координат.


Автор
Дата добавления 19.05.2015
Раздел Математика
Подраздел Презентации
Просмотров180
Номер материала 288350
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх