696645
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 70%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаПрезентацииПрезентация к уроку математике по теме "Многогранники" 10 класс

Презентация к уроку математике по теме "Многогранники" 10 класс

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
ВЫПОЛНИЛА ОКСЮТА КСЕНИЯ МНОГОГРАННИКИ
Отрезки, соединяющие вершины многогранника, не принадлежащие одной грани, наз...
Многогранник, поверхность которого состоит из шести квадратов Многогранник, п...
Многогранник, поверхность которого состоит из двух равных многоугольников и...
Площадь призмы Sбок. + 2Sосн Sбок. = Ph a b h Теорема: Площадь боковой поверх...
Многогранник, поверхность которого состоит из многоугольника и треугольников,...
Основание правильный многоугольник, высота опущена в центр основания. Перпенд...
Усеченная пирамида Боковые грани – трапеции Теорема: Площадь боковой поверхно...
Теорема Эйлера Число граней + число вершин - число ребер = 2. 4 4 6 8 6 12 20...

Описание презентации по отдельным слайдам:

1 слайд ВЫПОЛНИЛА ОКСЮТА КСЕНИЯ МНОГОГРАННИКИ
Описание слайда:

ВЫПОЛНИЛА ОКСЮТА КСЕНИЯ МНОГОГРАННИКИ

2 слайд Отрезки, соединяющие вершины многогранника, не принадлежащие одной грани, наз
Описание слайда:

Отрезки, соединяющие вершины многогранника, не принадлежащие одной грани, называются диагоналями. Многогранником называется тело, поверхность которого состоит из конечного числа многоугольников, называемых гранями. Стороны и вершины этих многоугольников называются ребрами и вершинами.

3 слайд Многогранник, поверхность которого состоит из шести квадратов Многогранник, п
Описание слайда:

Многогранник, поверхность которого состоит из шести квадратов Многогранник, поверхность которого состоит из шести параллелограммов Параллелепипед называется прямоугольным, если все его грани прямоугольники Куб Прямоугольный параллелепипед Параллелепипед

4 слайд Многогранник, поверхность которого состоит из двух равных многоугольников и
Описание слайда:

Многогранник, поверхность которого состоит из двух равных многоугольников и параллелограммов, имеющих общие стороны с каждым из оснований. вы с ота п р я м а я Призма Два равных многоугольника называют основаниями призмы Параллелограммы называют боковыми гранями призмы Перпендикуляр, проведенный из вершины одного основания к плоскости другого основания называют высотой.

5 слайд Площадь призмы Sбок. + 2Sосн Sбок. = Ph a b h Теорема: Площадь боковой поверх
Описание слайда:

Площадь призмы Sбок. + 2Sосн Sбок. = Ph a b h Теорема: Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту. Sбок. = ah + ah +bh + bh = = h( 2a + 2b) = Ph Sполн. =

6 слайд Многогранник, поверхность которого состоит из многоугольника и треугольников,
Описание слайда:

Многогранник, поверхность которого состоит из многоугольника и треугольников, имеющих общую вершину Многоугольник называют основанием пирамиды Треугольники называют боковыми гранями Общую вершину называют вершиной пирамиды Перпендикуляр РН называют высотой Sбок. + Sосн. Н Р Пирамида Sполн. =

7 слайд Основание правильный многоугольник, высота опущена в центр основания. Перпенд
Описание слайда:

Основание правильный многоугольник, высота опущена в центр основания. Перпендикуляр РЕ называют апофемой Теорема: Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему Р Е Правильная пирамида Боковые ребра равны Боковые грани – равные равнобедренные треугольники Основание высоты совпадает с центром вписанной или описанной окружности

8 слайд Усеченная пирамида Боковые грани – трапеции Теорема: Площадь боковой поверхно
Описание слайда:

Усеченная пирамида Боковые грани – трапеции Теорема: Площадь боковой поверхности правильной усеченной пирамиды равна половине произведения полусуммы периметров оснований на апофему

9 слайд
Описание слайда:

10 слайд Теорема Эйлера Число граней + число вершин - число ребер = 2. 4 4 6 8 6 12 20
Описание слайда:

Теорема Эйлера Число граней + число вершин - число ребер = 2. 4 4 6 8 6 12 20 12 30 12 20 30 6 8 12 Многогранник тетраэдр октаэдр икосаэдр додекаэдр куб Число граней Число вершин Число ребер

Общая информация

Номер материала: ДБ-145206

Вам будут интересны эти курсы:

Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.