Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Презентации / Презентация к уроку стереометрия 11 класс "Шар, сфера, тела вращения"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Презентация к уроку стереометрия 11 класс "Шар, сфера, тела вращения"

библиотека
материалов
Комбинации шара (сферы) с многогранниками и фигурами вращения. Геометрия, 11...
Шар (сфера) называются описанными около многогранника, если все вершины много...
ПРИМЕЧАНИЕ 1. Около любой правильной пирамиды можно описать сферу (шар). Цент...
R R Шар (сфера), описанные около правильной треугольной призмы. Шар (сфера),...
Шар (сфера), описанные около правильной четырехугольной пирамиды. Шар (сфера)...
Шар (сфера) называются вписанными в многогранник, если все грани многогранник...
ПРИМЕЧАНИЕ 2. Если в основание пирамиды можно вписать окружность, а основание...
B C S M N O L A K F C S N O F L NFL= NFO LNF=ONF B C S M N O K A F S M...
B C M N O L A F B C A D B1 C1 A1 D1 Шар (сфера), вписанные в правильную треуг...
Rш Rш Rк O F L A S H K Rш Шар (сфера), вписанные в конус. Центр – точка перес...
Шар (сфера), вписанные в цилиндр. Центр – середина отрезка, соединяющего цент...
11 1

Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Описание презентации по отдельным слайдам:

№ слайда 1 Комбинации шара (сферы) с многогранниками и фигурами вращения. Геометрия, 11
Описание слайда:

Комбинации шара (сферы) с многогранниками и фигурами вращения. Геометрия, 11 класс.

№ слайда 2 Шар (сфера) называются описанными около многогранника, если все вершины много
Описание слайда:

Шар (сфера) называются описанными около многогранника, если все вершины многогранника принадлежат поверхности шара (сфере). R R R R R R R R – радиус шара (сферы), описанных около многогранника.

№ слайда 3 ПРИМЕЧАНИЕ 1. Около любой правильной пирамиды можно описать сферу (шар). Цент
Описание слайда:

ПРИМЕЧАНИЕ 1. Около любой правильной пирамиды можно описать сферу (шар). Центр этой сферы (шара) – точка пересечения прямой, содержащей высоту пирамиды и серединного перпендикуляра к боковому ребру, проведенному в плоскости, содержащей высоту и боковое ребро пирамиды. ПРИМЕЧАНИЕ 2. Около любой правильной призмы можно описать сферу (шар). Центр этой сферы (шара) – середина отрезка, соединяющего центры описанных около оснований призмы окружностей. ПРИМЕЧАНИЕ 3. Если около основания прямой призмы можно описать окружность, то около призмы можно описать сферу (шар). Центром описанной сферы (шара) является середина отрезка, соединяющего центры описанных около основания призмы окружностей. Напомним, что: около любого треугольника можно описать окружность; около четырехугольника можно описать окружность, если суммы его противоположных углов равны 1800 (прямоугольник, квадрат, равнобокая трапеция и т.д.); около любого правильного многоугольника можно описать окружность.

№ слайда 4 R R Шар (сфера), описанные около правильной треугольной призмы. Шар (сфера),
Описание слайда:

R R Шар (сфера), описанные около правильной треугольной призмы. Шар (сфера), описанные около правильной четырехугольной призмы. B C D A B C S N A F O F N S B1 C1 M1 A1 O1 B1 C1 A1 O1 D1 Выполните чертежи в тетради! Выведите соотношения между R, Rосн., rосн. и H. O F R A A1 C C1 O O1 D B C A S N B C A O M O F O1 C C1 M M1 R rосн. Rосн. rосн. Rосн. Rосн. Rосн. R N S H H AA1=H O M

№ слайда 5 Шар (сфера), описанные около правильной четырехугольной пирамиды. Шар (сфера)
Описание слайда:

Шар (сфера), описанные около правильной четырехугольной пирамиды. Шар (сфера), описанные около правильной треугольной пирамиды. F B C S A D O N C A S A F O M N rосн. Rосн. R rосн. R R S N F R O Rосн. Выполните чертежи в тетради! Выведите соотношения между R, Rосн., rосн. и H. ON=H B C A F O M S N K K K K

№ слайда 6 Шар (сфера) называются вписанными в многогранник, если все грани многогранник
Описание слайда:

Шар (сфера) называются вписанными в многогранник, если все грани многогранника касаются поверхности шара (сферы). Напомним, что касательная плоскость перпендикулярна радиусу шара (сферы), проведенному к точке касания!

№ слайда 7 ПРИМЕЧАНИЕ 2. Если в основание пирамиды можно вписать окружность, а основание
Описание слайда:

ПРИМЕЧАНИЕ 2. Если в основание пирамиды можно вписать окружность, а основание высоты пирамиды является центром этой окружности, то в пирамиду можно вписать сферу (шар). ПРИМЕЧАНИЕ 1. В любую правильную пирамиду можно вписать сферу (шар). Центр этой сферы (шара) – точка пересечения высоты пирамиды и биссектрисы двугранного угла между боковой гранью и плоскостью основания пирамиды. ПРИМЕЧАНИЕ 3. Если в основание прямой призмы можно вписать окружность, а высота призмы равна диаметру этой окружности, то в призму можно вписать сферу (шар). Центром вписанной сферы (шара) является середина отрезка, соединяющего центры вписанных в основания призмы окружностей. Напомним, что: в любой треугольник можно вписать окружность; в четырехугольник можно вписать окружность, если суммы его противоположных сторон равны (квадрат, ромб и т.д.); в любой правильный многоугольник можно вписать окружность.

№ слайда 8 B C S M N O L A K F C S N O F L NFL= NFO LNF=ONF B C S M N O K A F S M
Описание слайда:

B C S M N O L A K F C S N O F L NFL= NFO LNF=ONF B C S M N O K A F S M N O K F MFK= MFO KMF=OMF Шар (сфера), вписанные в правильную треугольную пирамиду. Шар (сфера), вписанные в правильную четырехугольную пирамиду. Достаточно рассмотреть сечение NSC: Достаточно рассмотреть сечение NSM: rосн. Rосн. D rосн. R R R R OS=H Выполните чертежи в тетради! Выведите соотношения между R, Rосн., rосн. и H.

№ слайда 9 B C M N O L A F B C A D B1 C1 A1 D1 Шар (сфера), вписанные в правильную треуг
Описание слайда:

B C M N O L A F B C A D B1 C1 A1 D1 Шар (сфера), вписанные в правильную треугольную призму. Шар (сфера), вписанные в правильную четырехугольную призму (куб). B1 C1 A1 F O O1 O1 K K L Выполните чертежи в тетради! B C A M N O B C A D O M N M N Очевидно, что R=rосн. rосн. Очевидно, что R=rосн. R R R R

№ слайда 10 Rш Rш Rк O F L A S H K Rш Шар (сфера), вписанные в конус. Центр – точка перес
Описание слайда:

Rш Rш Rк O F L A S H K Rш Шар (сфера), вписанные в конус. Центр – точка пересечения высоты конуса и биссектрисы угла между образующей конуса и плоскостью основания (F). Шар (сфера), описанные около конуса. Центр – точка пересечения высоты конуса и серединного перпендикуляра к образующей конуса (F). B O A F S Oс K H L Rк S O A F K Rк Rш H L Rш rс rс Oс Rш Rш Rк S O A F K Rш

№ слайда 11 Шар (сфера), вписанные в цилиндр. Центр – середина отрезка, соединяющего цент
Описание слайда:

Шар (сфера), вписанные в цилиндр. Центр – середина отрезка, соединяющего центры оснований цилиндра. Шар (сфера), описанные около цилиндра. Центр – середина отрезка, соединяющего центры оснований цилиндра. F Rш F Rш O Rц O Rц H H D C B A Осевое сечение ABCD – квадрат. Цилиндр – равносторонний.


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Краткое описание документа:

В данной презентации находятся примеры задач, когда сфера описана около призмы треугольной и четырехугольной. Задачи на вписанный шар в многогранники.

ПРИМЕЧАНИЕ 1. В любую правильную пирамиду можно вписать сферу (шар). Центр этой сферы (шара) – точка пересечения высоты пирамиды и биссектрисы двугранного угла между боковой гранью и плоскостью основания пирамиды.
ПРИМЕЧАНИЕ 2. Если в основание пирамиды можно вписать окружность, а основание высоты пирамиды является центром этой окружности, то в пирамиду можно вписать сферу (шар).

Автор
Дата добавления 22.05.2016
Раздел Математика
Подраздел Презентации
Просмотров316
Номер материала ДБ-094712
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх