Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Презентации / Презентация на тему "Производная"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Презентация на тему "Производная"

библиотека
материалов
производная
Производная (функции в точке) — основное понятие дифференциального исчисления...
История В классическом дифференциальном исчислении производная чаще всего опр...
Василий Иванович Висковатов (26 декабря 1779 (6 января 1780), Санкт-Петербург...
Определение производной Скорость бывает не только у автомобиля. Мы можем гово...
Дадим аргументу x некоторое приращение, обозначаемое ∆x. Попадём в точку x +...
7 1

Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Описание презентации по отдельным слайдам:

№ слайда 1 производная
Описание слайда:

производная

№ слайда 2 Производная (функции в точке) — основное понятие дифференциального исчисления
Описание слайда:

Производная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке). Процесс вычисления производной называется дифференци́рованием. Обратный процесс — нахождение первообразной — интегрирование.

№ слайда 3 История В классическом дифференциальном исчислении производная чаще всего опр
Описание слайда:

История В классическом дифференциальном исчислении производная чаще всего определяется через понятия теории пределов, однако исторически теория пределов появилась позже дифференциального исчисления. Русский термин «производная функции» впервые употребил В. И. Висковатов

№ слайда 4 Василий Иванович Висковатов (26 декабря 1779 (6 января 1780), Санкт-Петербург
Описание слайда:

Василий Иванович Висковатов (26 декабря 1779 (6 января 1780), Санкт-Петербург — 8 (20) октября 1812, Санкт-Петербург) — русский математик. Известный специалист в области математического анализа и вариационного исчисления, один из активных последователей С. Г. Гурьева в пропаганде новых передовых научных идей. Выпущен из Артиллерийского и Инженерного Шляхетского Кадетского Корпуса в 1796 года штык-юнкером в корпусные офицеры. С 1803 года признан крупным математиком, избран академиком Петербургской Академии наук. С 1810 года — профессор чистой и прикладной математики в Институте Корпуса инженеров путей сообщения[1]. Впервые употребил русский термин "производная функции".[2]

№ слайда 5 Определение производной Скорость бывает не только у автомобиля. Мы можем гово
Описание слайда:

Определение производной Скорость бывает не только у автомобиля. Мы можем говорить о скорости изменения чего угодно — например, физической величины или экономического показателя. Производная как раз и служит обобщением понятия мгновенной скорости на случай абстрактных математических функций. Рассмотрим функцию y = f(x). Напомним, что x называется аргументом данной функции. Отметим на оси X некоторое значение аргумента x, а на оси Y — соответствующее значение функции f(x)

№ слайда 6 Дадим аргументу x некоторое приращение, обозначаемое ∆x. Попадём в точку x +
Описание слайда:

Дадим аргументу x некоторое приращение, обозначаемое ∆x. Попадём в точку x + ∆x. Обозначим её на рисунке вместе с соответствующим значением функции f(x + ∆x). Величина ∆f = f(x + ∆x) − f(x) (11) называется приращением функции, которое отвечает данному приращению аргумента ∆x. Вы видите сходство с предыдущим пунктом? Приращение аргумента ∆x есть абстрактный аналог промежутка времени ∆t, а соответствующее приращение функции ∆f — это аналог пути ∆s, пройденного за время ∆t. Но на этом аналогия не заканчивается. Производная — это в точности аналог мгновенной скорости.

№ слайда 7
Описание слайда:


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 30.09.2015
Раздел Математика
Подраздел Презентации
Просмотров332
Номер материала ДВ-020709
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх