Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация на тему " Воображаемая Геометрия"

Презентация на тему " Воображаемая Геометрия"

Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

К ОПЛАТЕ ЗА ОДНОГО УЧЕНИКА: ВСЕГО 28 РУБ.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика
Работу выполнил учащиеся класса средней школы №10 г.
Гипотеза: Любая теория современной науки считается единственно верной, пока н...
Задачи: провести эксперимент «Иллюзии зрения»; изучить постулаты Евклидовой г...
Видите движение на этой картинке?
Эксперимент «Иллюзии зрения» На рисунке буквы расположены параллельно (стоят...
Николай Иванович Лобачевский (1792 – 1856 гг.) Все! Перечеркнуты “Начала”. До...
Евклид (III век до н. э.) Древнегреческий математик, автор первого трактата п...
«Чем отличается геометрия Лобачевского от геометрии Евклида?» через точку, не...
Неевклидова геометрия единственно правильная? Нельзя сказать, что неевклидова...
Выводы Как показали исследования, геометрия Лобачевского (в то числе и 5-ый п...
Список литературы Схоутен Я. А. Риманова геометрия, пер. с англ., М., 1948; К...
1 из 11

Описание презентации по отдельным слайдам:

№ слайда 1 Работу выполнил учащиеся класса средней школы №10 г.
Описание слайда:

Работу выполнил учащиеся класса средней школы №10 г.

№ слайда 2 Гипотеза: Любая теория современной науки считается единственно верной, пока н
Описание слайда:

Гипотеза: Любая теория современной науки считается единственно верной, пока не создана следующая. Невозможность доказать некоторое геометрическое утверждение средствами евклидовой геометрии послужило поводом построения другой геометрии, которая также является верной. Был мудрым Евклид, Но его параллели, Как будто бы вечные сваи легли. И мысли его, что как стрелы летели, Всегда оставались в пределах Земли. А там, во вселенной, другие законы, Там точками служат иные тела. И там параллельных лучей миллионы Природа сквозь Марс, может быть, провела. Цель: Найти доказательство того, что истинно утверждение «через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и параллельные ей»

№ слайда 3 Задачи: провести эксперимент «Иллюзии зрения»; изучить постулаты Евклидовой г
Описание слайда:

Задачи: провести эксперимент «Иллюзии зрения»; изучить постулаты Евклидовой геометрии; изучить аксиомы геометрии Лобачевского; сделать сравнительный анализ двух геометрий; выяснить нет ли геометрий, основанных на других аксиомах; сделать выводы.

№ слайда 4 Видите движение на этой картинке?
Описание слайда:

Видите движение на этой картинке?

№ слайда 5 Эксперимент «Иллюзии зрения» На рисунке буквы расположены параллельно (стоят
Описание слайда:

Эксперимент «Иллюзии зрения» На рисунке буквы расположены параллельно (стоят прямо) или нет? 1 ИТОГИ опроса: всего параллельно нет 300 3% 97% Ответ: параллельно. всего спираль окружности 300 100% 0% Ответ: окружности. На рисунке изображена спираль или несколько окружностей? 2 ВЫВОД: В геометрии истинность каждого утверждения необходимо доказывать, нельзя полагаться только на наблюдения. Положительный момент: благодаря зрительным искажениям существует живопись. Если интересно

№ слайда 6 Николай Иванович Лобачевский (1792 – 1856 гг.) Все! Перечеркнуты “Начала”. До
Описание слайда:

Николай Иванович Лобачевский (1792 – 1856 гг.) Все! Перечеркнуты “Начала”. Довольно мысль на них скучала, Хоть прав почти во всем Евклид, Но быть не вечно постоянству: И плоскость свернута в пространство, И мир Иной имеет вид... Краткое описание геометрии Лобачевского. ВЫВОД: Заменив V постулат евклидовой геометрии на аксиому, Лобачевский пришел к выводу, что можно построить другую геометрию, отличную от евклидовой.

№ слайда 7 Евклид (III век до н. э.) Древнегреческий математик, автор первого трактата п
Описание слайда:

Евклид (III век до н. э.) Древнегреческий математик, автор первого трактата по геометрии «Начала» (в 13 книгах). В основе всей геометрии греческого математика Евклида лежало несколько простых первоначальных утверждений (аксиом), которые принимались за истинные без доказательств. Из аксиом путем доказательств выводились более сложные утверждения, из тех выводились еще более сложные. Особый интерес математиков всегда вызывала пятая аксиома о параллельных прямых. В отличие от остальных аксиом элементарной геометрии, аксиома параллельных не обладает свойством непосредственной очевидности. Поэтому на всем протяжении истории геометрии имели место попытки доказать аксиому параллельных, то есть вывести ее из остальных аксиом геометрии.

№ слайда 8 «Чем отличается геометрия Лобачевского от геометрии Евклида?» через точку, не
Описание слайда:

«Чем отличается геометрия Лобачевского от геометрии Евклида?» через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. ВЫВОД: Геометрия Лобачевского отличается от евклидовой лишь в одной аксиоме — пятой. Но главное различие кроется в понимании самой природы пространства. Евклидова аксиома о параллельных: Аксиома Лобачевского о параллельных:

№ слайда 9 Неевклидова геометрия единственно правильная? Нельзя сказать, что неевклидова
Описание слайда:

Неевклидова геометрия единственно правильная? Нельзя сказать, что неевклидова геометрия единственно правильная. На данный момент к ней нет никаких претензий. Но, может быть, через много лет она устареет – или это произойдет быстрее? Так или иначе, но наука никогда не будет стоять на месте. Геометрия Лобачевского не единственная, существуют и другие, например Римана геометрия: Риманова геометрия, многомерное обобщение геометрии на поверхности, представляющее собой теорию римановых пространств, т. е. таких пространств, где в малых областях приближённо имеет место евклидова геометрия (с точностью до малых высшего порядка сравнительно с размерами области). Риманова геометрия получила своё название по имени Б. Римана, который заложил её основы в 1854.

№ слайда 10 Выводы Как показали исследования, геометрия Лобачевского (в то числе и 5-ый п
Описание слайда:

Выводы Как показали исследования, геометрия Лобачевского (в то числе и 5-ый постулат) совершенно верна, если ее рассматривать не на плоскости, а на поверхности гиперболического параболоида (вогнутой поверхности, напоминающей седло). Любая теория современной науки считается единственно верной, пока не создана следующая. Это своеобразная аксиома развития науки.

№ слайда 11 Список литературы Схоутен Я. А. Риманова геометрия, пер. с англ., М., 1948; К
Описание слайда:

Список литературы Схоутен Я. А. Риманова геометрия, пер. с англ., М., 1948; Колесников М. Лобачевский./. Серия «Жизнь замечательных людей». – М.: Молодая гвардия, 1965. – 320 стр. с илл. Широков П.А. Краткий очерк основ геометрии Лобачевского./. – М.: Наука, 1983. – 76 стр. Лобачевский Н.И. Полное собрание сочинений, тт. 1–5. М. – Л., 1946–1951 Геометрия Лобачевского. Материал из Википедии — свободной энциклопедии Web ресурсы http://www.pereplet.ru/obrazovanie/stsoros/67.html - о неевклидовой геометрии, Э. Б. ВИНБЕРГ, Московский государственный университет им. М.В. Ломоносова http://www.hrono.ru/biograf/lobachevski.html - Шикман А.П. Деятели отечественной истории. Биографический справочник. Москва, 1997 г. http://ns.math.rsu.ru/mexmat/polesno/evklid.ru.html - биография Евклида.

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy



Автор
Дата добавления 16.10.2016
Раздел Математика
Подраздел Презентации
Просмотров23
Номер материала ДБ-266447
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх