1100594
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 60%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

Манифест «Инфоурок»
ИнфоурокМатематикаПрезентацииПрезентация по алгебре и началам анализа на тему "Нестандартные способы решения задач на смеси и сплавы"
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Только сейчас Вы можете пройти дистанционное обучение прямо на сайте "Инфоурок" со скидкой 60% по курсу повышения квалификации "Организация работы с обучающимися с ограниченными возможностями здоровья (ОВЗ) в соответствии с ФГОС" (72 часа). По окончании курса Вы получите печатное удостоверение о повышении квалификации установленного образца (доставка удостоверения бесплатна).

Подать заявку на этот курс    Смотреть список всех 646 курсов

Презентация по алгебре и началам анализа на тему "Нестандартные способы решения задач на смеси и сплавы"

библиотека
материалов
 Нестандартные способы решения задач на смеси и сплавы
Теоретическая часть
Теоретические основы решения задач «на смеси, сплавы» 	 	Примем некоторые доп...
Пусть требуется приготовить раствор определенной концентрации. В распоряжени...
При решении задач на растворы с разными концентрациями чаще всего применяю...
Практическая часть
Задача 1. Морская вода содержит 5% соли (по массе). Сколько пресной воды нужн...
Задача 2. Из сосуда, доверху наполненного 97% раствором кислоты, отлили 2 лит...
Задача 3. Смешали 500 г 10%-го раствора соли и 400 г 55%-го раствора соли. Оп...
Задача 4. Имеются два слитка, содержащие медь. Масса второго слитка на 3 кг б...
Задача 5. Сплавили 300 г сплава олова и меди, содержащего 60% олова, и 900г с...
Ответ: 5%. Задача 6. В сосуд, содержащий 5 литров 12-процентного водного рас...
Задача 7. Смешали некоторое количество 15-процентного раствора некоторого ве...
Задача 8. Смешали 4 литра 15-процентного водного раствора некоторого вещества...
Задача 9. Имеется два сплава. Первый содержит 10% никеля, второй — 30% никел...
Задача 10. Первый сплав содержит 10% меди, второй — 40% меди. Масса второго с...
Задача 11. По дороге ТУДА Винни Пух нашел дупло с мёдом. По его ощущениям это...
БЛАГОДАРЮ ЗА ВНИМАНИЕ

Описание презентации по отдельным слайдам:

1 слайд  Нестандартные способы решения задач на смеси и сплавы
Описание слайда:

Нестандартные способы решения задач на смеси и сплавы

2 слайд Теоретическая часть
Описание слайда:

Теоретическая часть

3 слайд Теоретические основы решения задач «на смеси, сплавы» 	 	Примем некоторые доп
Описание слайда:

Теоретические основы решения задач «на смеси, сплавы» Примем некоторые допущения: Все получающиеся сплавы или смеси однородны. При решении этих задач считается, что масса смеси нескольких веществ равна сумме масс компонентов. Определение. Процентным содержанием ( концентрацией) вещества в смеси называется отношение его массы к общей массе всей смеси. Это отношение может быть выражено либо в дробях, либо в процентах. Терминология: процентное содержание вещества; концентрация вещества; массовая доля вещества. Всё это синонимы.

4 слайд Пусть требуется приготовить раствор определенной концентрации. В распоряжени
Описание слайда:

Пусть требуется приготовить раствор определенной концентрации. В распоряжении имеется два раствора с более высокой и менее высокой концентрацией, чем нужно. Если обозначить массу первого раствора через m 1, а второго – через m 2, то при смешивании общая масса смеси будет складываться из суммы этих масс. Пусть массовая доля растворённого вещества в первом растворе – ω 1, во втором – ω 2, а в их смеси – ω 3. Тогда общая масса растворённого вещества в смеси будет складываться из масс растворённого вещества в исходных растворах: m 1 ω 1 + m 2 ω 2 = ω 3(m 1 + m 2), m 1(ω 1 – ω 3) = m 2(ω 3 – ω 2), Очевидно, что отношение массы первого раствора к массе второго раствора есть отношение разности массовых долей растворённого вещества в смеси и во втором растворе к разности соответствующих величин в первом растворе и в смеси. Правило креста или квадрат Пирсона

5 слайд При решении задач на растворы с разными концентрациями чаще всего применяю
Описание слайда:

При решении задач на растворы с разными концентрациями чаще всего применяют диагональную схему правила смешения или квадрат Пирсона. При расчётах записывают одну над другой массовые доли растворённого вещества в исходных растворах, справа между ними – его массовую долю в растворе, который нужно приготовить, и вычитают по диагонали из большего меньшее значение. Разности их вычитаний показывают массовые доли для первого и второго растворов, необходимые для приготовления нужного раствора. ω1 ω3 — ω2 ω3 ω2 ω1 — ω3

6 слайд Практическая часть
Описание слайда:

Практическая часть

7 слайд Задача 1. Морская вода содержит 5% соли (по массе). Сколько пресной воды нужн
Описание слайда:

Задача 1. Морская вода содержит 5% соли (по массе). Сколько пресной воды нужно добавить к 30 кг морской воды, чтобы концентрация соли составила 1,5%? Решение: 5% 0% 1,5% 1,5% 3,5% 30 кг х кг

8 слайд Задача 2. Из сосуда, доверху наполненного 97% раствором кислоты, отлили 2 лит
Описание слайда:

Задача 2. Из сосуда, доверху наполненного 97% раствором кислоты, отлили 2 литра жидкости и долили 2 литра 45% раствора этой же кислоты. После этого в сосуде получился 81% раствор кислоты. Сколько литров раствора вмещает сосуд? Решение: 97% 81% 45% 16% 36% (х-2) л 2 л

9 слайд Задача 3. Смешали 500 г 10%-го раствора соли и 400 г 55%-го раствора соли. Оп
Описание слайда:

Задача 3. Смешали 500 г 10%-го раствора соли и 400 г 55%-го раствора соли. Определите концентрацию соли в смеси. Решение: Ответ: концентрация соли в смеси двух исходных растворов 30%. (х-10)% (55-х)% 500 г 400 г 55% 10% х%

10 слайд Задача 4. Имеются два слитка, содержащие медь. Масса второго слитка на 3 кг б
Описание слайда:

Задача 4. Имеются два слитка, содержащие медь. Масса второго слитка на 3 кг больше, чем масса первого слитка. Процентное содержание меди в первом слитке – 10%, во втором – 40%. После сплавления этих двух слитков, получился слиток, процентное содержание меди в котором 30%. Определить массу полученного слитка. Решение: 40% 10% 30% 10% 20% (х+3) кг х кг

11 слайд Задача 5. Сплавили 300 г сплава олова и меди, содержащего 60% олова, и 900г с
Описание слайда:

Задача 5. Сплавили 300 г сплава олова и меди, содержащего 60% олова, и 900г сплава олова и меди, содержащего 80% олова. Сколько процентов олова в получившемся сплаве? Решение: 60% 80% х% (х-60)% (80-х)% 300 г 900 г

12 слайд Ответ: 5%. Задача 6. В сосуд, содержащий 5 литров 12-процентного водного рас
Описание слайда:

Ответ: 5%. Задача 6. В сосуд, содержащий 5 литров 12-процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора? Решение: х% 12% 0% х% (12–х)% 5 л 7 л

13 слайд Задача 7. Смешали некоторое количество 15-процентного раствора некоторого ве
Описание слайда:

Задача 7. Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 19-процентного раство- ра этого вещества. Сколько процентов составляет концентрация получившегося раствора? Решение: Ответ: 17%. 15% 19% х% (19–х)% (х–15)% т г т г

14 слайд Задача 8. Смешали 4 литра 15-процентного водного раствора некоторого вещества
Описание слайда:

Задача 8. Смешали 4 литра 15-процентного водного раствора некоторого вещества с 6 литрами 25-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора? Решение: Ответ: 21%. 15% 25% х% (25–х)% (х–15)% 4 л 6 л

15 слайд Задача 9. Имеется два сплава. Первый содержит 10% никеля, второй — 30% никел
Описание слайда:

Задача 9. Имеется два сплава. Первый содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго? Решение: (кг) – 1-й сплав; (кг) – 2-й сплав; (кг) – разница. Ответ: на 100 кг. 10% 30% 25% 5% 15% х кг (200–х) кг 1) 2) 3)

16 слайд Задача 10. Первый сплав содержит 10% меди, второй — 40% меди. Масса второго с
Описание слайда:

Задача 10. Первый сплав содержит 10% меди, второй — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах. Решение: (кг) — 1-й сплав; (кг) — 2-й сплав; (кг) — 3-й сплав. 10% 40% 30% 10% 20% х кг (х+3) кг 1) 2) 3) Ответ: 9 кг.

17 слайд Задача 11. По дороге ТУДА Винни Пух нашел дупло с мёдом. По его ощущениям это
Описание слайда:

Задача 11. По дороге ТУДА Винни Пух нашел дупло с мёдом. По его ощущениям этот мёд, к сожалению, только лишь на одну пятую часть правильный (остальные четыре пятые – неправильные). В дупле же, найденном по дороге ОБРАТНО, мёд на 60% правильный. Сколько килограммов мёда нужно взять из первого и второго(10 – Х) кг дупла, чтобы в общей сложности получить 10 кг меда, содержащего 32% правильного? Решение: Ответ: 7 килограммов из первого и 3 килограмма из второго дупла.

18 слайд БЛАГОДАРЮ ЗА ВНИМАНИЕ
Описание слайда:

БЛАГОДАРЮ ЗА ВНИМАНИЕ

Ого! На "Инфоуроке" олимпиады стали бесплатными    успеть подать заявку
Не тот материал, который искали? Воспользуйтесь поиском по нашей базе из 3116331 материала.
Искать
Общая информация

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Благодарность за вклад в методическое обеспечение учебного процесса по преподаваемой дисциплине

Опубликуйте 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Добавить материал
Сертификат о создании персонального учительского сайта

Опубликуйте 5 материалов, чтобы БЕСПЛАТНО получить сертификат о создании сайта

Добавить материал
Грамота за высокий уровень сформированности информационно-коммуникационной компетентности

Опубликуйте 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Добавить материал
Свидетельство за транслирование результатов своей профессиональной деятельности

Опубликуйте 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Добавить материал
Грамота за личный вклад в повышение качества образования

Опубликуйте 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Добавить материал
Почётная грамота за высокий уровень профессионализма

Опубликуйте 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Добавить материал
Золотая грамота за современный подход к преподаванию и повышение качества педагогического труда

Опубликуйте 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную золотую грамоту

Добавить материал
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.