Курс повышения квалификации
Видеолекция
1 слайд
Наталья Павловна Щеголева,
учитель математики высшей категории
«Применение производной к построению графиков функций»
Урок алгебры в 11 классе. 2 часа
МОУ ТСОШ № 14,
П. Томилино
2 слайд
«Применение производной к построению графиков функций»
практическое применение знаний и умений
3 слайд
Цель работы на зачетном уроке
обобщить знания связанные с производной;
закрепить решение задач с помощью производной;
оценить свои знания по теме;
развивать умение работать в группе;
развивать логическое мышление;
формировать навыки
контроля и самоконтроля.
4 слайд
План урока
Повторение основных понятий и определений;
Физический смысл производной;
Работа с графиками функции и производной;
Составление линейной схемы связи производной и функции;
Применение полной схемы исследования функции, построение графиков функций;
Практическое применение умения строить графики функций с помощью
f '(x)
5 слайд
Инструкция для работы в группе
Распределите обязанности в группе:
Внимательно прочитайте задание, предложенное группе,
Наметьте алгоритм выполнения задания,
Выполните каждый свою часть задания,
Помните, от действий каждого зависит общий результат,
Обсудите результат работы группы, проверьте
Представьте своё решение классу,
Будьте внимательны, корректны и доброжелательны в общении с товарищами.
Следите за временем, номер задания совпадает с номером вашей группы.
6 слайд
Словарь терминов
Область определения функции: D (x) ;
Множество значений функции: E (y);
Нули функции;
Критические и стационарные точки функции;
Точки экстремумов, экстремумы функции (графическая иллюстрация)
Вид, положение критических точек (проиллюстрировать)
на графике функции,
на графике производной,
Монотонность функции её связь с f '(x)
(линейная схема)
Производная в физике
7 слайд
НАЙТИ
D (x); и E (x), нули
y=x²+Зx-5
y= lg(x+1)
y= 1/ х-3
4. y=COS X+2
5. y=Зª+6
Задание № 1
Обсуждение 1 мин, пояснить ответ группы
8 слайд
Найти производную функции в точке (задание №2)
Гр № 1 f '(-1) =
Гр № 2 f '(2) =
Гр № 3 f '(1) =
Гр № 4 f '(0) =
Гр № 5 f '(1/2) =
f (x) =1/4 x4 – 1/3 x3 +18
9 слайд
Проверь себя
Гр № 1 f '(-1) =-2
Гр № 2 f '(2) = 4
Гр № 3 f '(1) = 0
Гр № 4 f '(0) = 0
Гр № 5 f '(1/2) = -1/8
Выясните,
в чем особенность выделенных точек?
10 слайд
Определите по вид критической точки
на рисунках указаны знаки производной функции (задание № 3)
+ -
Х°
Х°
Х°
Х°
Х°
-
+
-
-
+
+
Обсуждение-1мин. Найти ваш схему и пояснить!
1
2
3
4
5
11 слайд
Найти ошибку в ответе
(задание № 4)
Ученик, определяя по графику точки экстремума, допустил некоторые ошибки.
Зная определение критических точек и точек экстремума , проанализируйте ответ и найдите ошибки!
Итог подведет Группа № 5
12 слайд
Найти ошибку в ответе
(задание № 4)
5
- 7
f '(x)
- 2
6
X = - 7 это точка минимума
X =- 2 это точка максимума
X = 5 критическая точка,
X = 6 нуль функции
13 слайд
Установите соответствие.
Группа 5 (задание № 4 итог)
?
14 слайд
МОНОТОННОСТЬ ФУНКЦИИ
«Однозвучно звучит колокольчик ….» -строчка из стихотворения
Что же такое МОНОТОННОСТЬ?
ОДНООБРАЗИЕ!? (так ли однообразна монотонная функция?)
В чем проявляется монотонность функции? Как она связана с производной функции?
Можно ли по графику функции определить монотонность функции?
15 слайд
Математики шутят
Подберите к графикам функций пословицы
и поговорки в русском языке, так или иначе,
отражающие их свойства, в том числе и монотонность
16 слайд
Математики шутят
Как аукнется, так и откликнется; (четность)
Тише едешь, дальше будешь; (уб)
Повторенье – мать ученья; (периодичн)
Чем дальше в лес, тем больше дров;( возр)
Любишь кататься, люби и саночки возить; (уб-возр, четн)
17 слайд
Алгоритм исследования функции на монотонность
Гр 1 f‘ (x)= (x-2)(x+2)
Найдите промежутки монотонности, составьте линейную схему
х
f‘
f
-2
2
Задание 5
18 слайд
Задан график y=f '(x)
укажите:
(по группам)
х
у
y=f '(x)
-3
0
3
-2
2
Критические точки;
Промежутки знакопостоянства производной;
Точки экстремумов;
Промежутки монотонности функции
ЕГЭ
19 слайд
Задан график y=f '(x)
проверьте!
х
у
y=f '(x)
-3
0
3
-2
2
Критические точки: x=З;0;3
Промежутки знакопостоянства производной;
Точки экстремумов; X max=- 3;3; X min=0;
Промежутки монотонности функции
+
+
-
-
20 слайд
Опишите функцию по графику производной
0
y=f '(x)
Задания ЕГЭ-2008
-2
-3
-6
10
21 слайд
-6
-3
-2
0
10
y=f '(x)
-
-
-
+
+
+
Проверь себя!
22 слайд
Схема исследования функции
Алгоритм
исследования функции с помощью производной и построение графика функции
Область определения функции,
Множество значений функции,
Четность,
Периодичность,
Критические и стационарные точки,
Монотонность функции,
Экстремумы функции,
Таблица исследования функции,
Таблица дополнительных точек для построения графика
(Итог)
23 слайд
Производная в физике
Применение производной при решении задач (сообщение ученика)
24 слайд
Производная в физике (задание 6)
Решите в группе задачи, решение представьте на кодопленке
Точка движется по закону X (t) = 4t+t²-1/6t³. Найдите скорость в момент времени t= 2 с.
Найдите ускорение движения материальной точки, опишите вид движения, если S (t)=3t² - 6t.
Найдите силу, действующую на тело массой 4 кг, которое движется прямолинейно по закону X (t) = 4t+t²-1/6t³.
Маховик, задерживаемый тормозом, поворачивается за t= 1 с на угол φ = 2t- 0,04t².Найдите угловую скорость вращения маховика в момент t=2c.
Количество электричества, протекающее через проводник, начиная с момента t=0, задается формулой q = 3t² +t +2. Найдите силу тока в момент времени t=3c.
25 слайд
Применение схемы исследования функции
работа в группах задание 7
Описать функцию и изобразить схему графика по заданной таблице; (1-2группы)
Исследовать функцию и построить график данной функции; (3группа)
Задача на применение производной в физике (4-5группа)
Отчет группы 2-3 мин
(15-20 мин)
26 слайд
«Футбольные болельщики »
Группа № 4
После удара по мячу нападающим Богатырём, футбольный мяч движется прямолинейно по закону:
S (t) = 2 t ³+ t ² – 4.
Сумеет ли полузащитник Клещенко перехватить мяч на 4-ой секунде после удара, если его скорость –
15 км /час?
2. Каково ускорение движения мяча?
3. Постройте график (траекторию) движения мяча.
27 слайд
Группа:«Баллисты - трассологи»
Помните рассказ о Бароне Мюнхгаузене?
Пушка стреляет под углом к горизонту. На ядре сидит Барон Мюнхгаузен, решивший на ядре перелететь через стены крепости.
Определите характер движения ядра: вид баллистической траектории, если V0 = 15 м/c,
g ≈10 м/ c², y 0 = 0.
Запишите формулу пройденного пути (траектории), постройте график (траекторию) движения
Мюнхгаузена на ядре.
Группа № 5
28 слайд
ИТОГ урока:
М.В. Ломоносов сказал: «Математику уже затем учить надо, что она ум в порядок приводит…»
Мы постарались привести в порядок все знания о производной функции…
Мы оценили свои умения, выработанные при её изучении,
Мы ещё раз убедились в важности изученной темы…
И доказали, что терпенье и труд….
6 269 587 материалов в базе
«Математика (базовый уровень)», Мордкович А.Г., Смирнова И.М.
§ 32. Применение производной для нахождения наибольших и наименьших значений величин
Больше материалов по этой темеНастоящий материал опубликован пользователем Щеголева Наталья Павловна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Удалить материалВаша скидка на курсы
40%Корпоративные коммуникации
Психологическая структура школьного класса
Ассортимент и приготовления соусов русской и зарубежной кухни
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.