Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация по алгебре на тему"Свойства функции"(9 класс)

Презентация по алгебре на тему"Свойства функции"(9 класс)


До 7 декабря продлён приём заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)

  • Математика
Монотонность Возрастающая Функцию у = f(х) называют возрастающей на множестве...
Наибольшее и наименьшее значения Число m называют наименьшим значением функци...
Непрерывность Непрерывность функции на промежутке Х означает, что график функ...
Выпуклость Функция выпукла вниз на промежутке Х, если, соединив любые две то...
Ограниченность Функцию у = f(х) называют ограниченной снизу на множестве Х, е...
Свойства функции ЧЕТНОСТЬ Говорят, что множество Х симметрично относительно н...
Алгоритм описания свойств функций Область определения Область значений Четнос...
Опишите свойства функций: у= kx + m – линейная функция у = kx2 – квадратичная...
1 из 16

Описание презентации по отдельным слайдам:

№ слайда 1 Монотонность Возрастающая Функцию у = f(х) называют возрастающей на множестве
Описание слайда:

Монотонность Возрастающая Функцию у = f(х) называют возрастающей на множестве Х, если для любых двух точек х1 и х2 множества Х, таких, что х1 < х2, выполняется неравенство f(х1) < f(х2). Убывающая Функцию у = f(х) называют убывающей на множестве Х, если для любых двух точек х1 и х2 множества Х, таких, что х1 < х2, выполняется неравенство f(х1) >f(х2). x1 x2 f(x1) f(x2) х1 x2 f(x2) f(x1) Свойства функции

№ слайда 2 Наибольшее и наименьшее значения Число m называют наименьшим значением функци
Описание слайда:

Наибольшее и наименьшее значения Число m называют наименьшим значением функции у = f(х) на множестве Х, если: в Х существует такая точка х0, что f(х0) = m. для всех х из Х выполняется неравенство f(х) ≥ f(х0). Число M называют наибольшим значением функции у = f(х) на множестве Х, если: в Х существует такая точка х0, что f(х0) = M. для всех х из Х выполняется неравенство f(х) ≤ f(х0). Свойства функции

№ слайда 3 Непрерывность Непрерывность функции на промежутке Х означает, что график функ
Описание слайда:

Непрерывность Непрерывность функции на промежутке Х означает, что график функции на промежутке Х сплошной, т.е. не имеет проколов и скачков. Задание: Определите, на каком из рисунков изображен график непрерывной функции. Свойства функции 1 2 подумай правильно

№ слайда 4 Выпуклость Функция выпукла вниз на промежутке Х, если, соединив любые две то
Описание слайда:

Выпуклость Функция выпукла вниз на промежутке Х, если, соединив любые две точки ее графика отрезком прямой, мы обнаружим, что соответствующая часть графика лежит ниже проведенного отрезка. Функция выпукла вверх на промежутке Х, если соединив любые две точки ее графика отрезком прямой, мы обнаружим, что соответствующая часть графика лежит выше проведенного отрезка. Свойства функции

№ слайда 5 Ограниченность Функцию у = f(х) называют ограниченной снизу на множестве Х, е
Описание слайда:

Ограниченность Функцию у = f(х) называют ограниченной снизу на множестве Х, если все значения функции на множестве Х больше некоторого числа. Функцию у = f(х) называют ограниченной сверху на множестве Х, если все значения функции на множестве Х меньше некоторого числа. х у х у Свойства функции

№ слайда 6 Свойства функции ЧЕТНОСТЬ Говорят, что множество Х симметрично относительно н
Описание слайда:

Свойства функции ЧЕТНОСТЬ Говорят, что множество Х симметрично относительно начала координат, если множество Х таково, что (- х)  Х при любом х  Х. Четная функция Нечетная функция Функция y = f(x) называется четной, если область ее определения есть множество, симметричное относительно начала координат, и если f (-x) = f (x) при любом х  Х. Четная функция симметрична относительно оси ординат. Функция y = f(x) называется четной, если область ее определения есть множество, симметричное относительно начала координат, и если f (-x) = f (x) при любом х  Х. Нечетная функция симметрична относительно начала координат.

№ слайда 7 Алгоритм описания свойств функций Область определения Область значений Четнос
Описание слайда:

Алгоритм описания свойств функций Область определения Область значений Четность Монотонность Непрерывность Ограниченность Наибольшее и наименьшее значения Нули функции Выпуклость Свойства функции

№ слайда 8 Опишите свойства функций: у= kx + m – линейная функция у = kx2 – квадратичная
Описание слайда:

Опишите свойства функций: у= kx + m – линейная функция у = kx2 – квадратичная функция у = k/x – обратная пропорциональность у = у = | х | у = ах2 + bх + с – квадратичная функция Свойства функции

№ слайда 9
Описание слайда:

№ слайда 10
Описание слайда:

№ слайда 11
Описание слайда:

№ слайда 12
Описание слайда:

№ слайда 13
Описание слайда:

№ слайда 14
Описание слайда:

№ слайда 15
Описание слайда:

№ слайда 16
Описание слайда:


57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)

Автор
Дата добавления 11.01.2016
Раздел Математика
Подраздел Презентации
Просмотров113
Номер материала ДВ-325355
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх