Инфоурок / Математика / Презентации / Презентация по дисциплине "Математика" на тему "Решение систем линейных уравнений" (1-й курс)

Презентация по дисциплине "Математика" на тему "Решение систем линейных уравнений" (1-й курс)

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Матрицы Метод Гаусса Формулы Крамера Омский летно-технический колледж граждан...
Содержание Что такое матрица? Карл Фридих Гаусс Метод Гаусса Габриэль Крамер...
Матрица Определение Прямоугольная таблица из m, n чисел, содержащая m – строк...
Иоганн Карл Фридрих Гаусс (30 апреля 1777, Брауншвейг — 23 февраля 1855, Гётт...
Метод Гаусса Метод Гаусса — классический метод решения системы линейных алгеб...
Типы уравнений Система линейных уравнений называется совместной, если она име...
Элементарные преобразования К элементарным преобразованиям системы отнесем сл...
Общий случай Для простоты рассмотрим метод Гаусса для системы трех линейных у...
2-ой шаг метода Гаусса На втором шаге исключим неизвестное х2 из третьего ура...
В результате преобразований система приняла вид: Система вида (5) называется...
Если в ходе преобразований системы получается противоречивое уравнение вида 0...
Рассмотрим на примере Покажем последовательность решения системы из трех урав...
Метод Крамера Метод Крамера—способ решения квадратных систем линейных алгебра...
Габриэль Крамер (31 июля 1704, Женева, Швейцария—4 января 1752, Баньоль-сюр-С...
Рассмотрим систему линейных уравнений с квадратной матрицей A , т.е. такую, у...
Имеет единственное решение тогда и только тогда, когда определитель матрицы э...
В этом случае решение можно вычислить по формуле Крамера
Для получения значения xk в числитель ставится определитель, получающийся из...
Решение.
Найдите оставшиеся компоненты решения. Формулы Крамера не представляют практи...
Найдите оставшиеся компоненты решения. Кроме того, формулы Крамера начинают к...
Решение. В этом примере определитель матрицы системы равен . По теореме Краме...
Ответ. 	Приведенный пример поясняет также каким образом система линейных урав...
Вывод Рассмотренный в данной презентации Метод Крамера позволяет решать линей...
Использованные источники В.С. Щипачев, Высшая математика Ильин В. А., Позняк...
25 1

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.


Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.


Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Описание презентации по отдельным слайдам:

№ слайда 1 Матрицы Метод Гаусса Формулы Крамера Омский летно-технический колледж граждан
Описание слайда:

Матрицы Метод Гаусса Формулы Крамера Омский летно-технический колледж гражданской авиации имени А.В. Ляпидевского - филиал федерального государственного бюджетного образовательного учреждения высшего образования «Ульяновский институт гражданской авиации имени Главного маршала авиации Б.П. Бугаева» (ОЛТК ГА – филиал ФГБОУ ВО УИ ГА)

№ слайда 2 Содержание Что такое матрица? Карл Фридих Гаусс Метод Гаусса Габриэль Крамер
Описание слайда:

Содержание Что такое матрица? Карл Фридих Гаусс Метод Гаусса Габриэль Крамер Метод Крамера Вывод Использованные источники информации

№ слайда 3 Матрица Определение Прямоугольная таблица из m, n чисел, содержащая m – строк
Описание слайда:

Матрица Определение Прямоугольная таблица из m, n чисел, содержащая m – строк и n – столбцов, вида: называется матрицей размера m  n Числа, из которых составлена матрица, называются элементами матрицы. Положение элемента аi j в матрице характеризуются двойным индексом: первый i – номер строки; второй j – номер столбца, на пересечении которых стоит элемент.  Сокращенно матрицы обозначают заглавными буквами: А, В, С… Коротко можно записывать так:

№ слайда 4 Иоганн Карл Фридрих Гаусс (30 апреля 1777, Брауншвейг — 23 февраля 1855, Гётт
Описание слайда:

Иоганн Карл Фридрих Гаусс (30 апреля 1777, Брауншвейг — 23 февраля 1855, Гёттинген) Биография Дед Гаусса был бедным крестьянином, отец — садовником, каменщиком, смотрителем каналов в герцогстве Брауншвейг. Уже в двухлетнем возрасте мальчик показал себя вундеркиндом. В три года он умел читать и писать. Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат 50х101=5050 . После 1801 года Гаусс включил в круг своих интересов естественные науки. Катализатором послужило открытие малой планеты Церера ,вскоре после наблюдений потерянной. 24-летний Гаусс проделал (за несколько часов) сложнейшие вычисления по новому, открытому им же методу, и указал место, где искать беглянку; там она, к общему восторгу, и была вскоре обнаружена. Умер Гаусс 23 февраля 1855 года в Гёттингене.

№ слайда 5 Метод Гаусса Метод Гаусса — классический метод решения системы линейных алгеб
Описание слайда:

Метод Гаусса Метод Гаусса — классический метод решения системы линейных алгебраических уравнений. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные. Система т линейных уравнений с п неизвестными имеет вид: x1 , x2, …, xn – неизвестные. ai j - коэффициенты при неизвестных. bi - свободные члены (или правые части)

№ слайда 6 Типы уравнений Система линейных уравнений называется совместной, если она име
Описание слайда:

Типы уравнений Система линейных уравнений называется совместной, если она имеет решение, и несовместной, если она не имеет решения. Совместная система называется определенной, если она имеет единственное решение и неопределенной, если она имеет бесчисленное множество решений. Две совместные системы называются равносильными, если они имеют одно и то же множество решений.

№ слайда 7 Элементарные преобразования К элементарным преобразованиям системы отнесем сл
Описание слайда:

Элементарные преобразования К элементарным преобразованиям системы отнесем следующее: перемена местами двух любых уравнений; умножение обеих частей любого из уравнений на произвольное число, отличное от нуля; прибавление к обеим частям одного из уравнений системы соответствующих частей другого уравнения, умноженных на любое действительное число.

№ слайда 8 Общий случай Для простоты рассмотрим метод Гаусса для системы трех линейных у
Описание слайда:

Общий случай Для простоты рассмотрим метод Гаусса для системы трех линейных уравнений с тремя неизвестными в случае, когда существует единственное решение: Дана система: 1-ый шаг метода Гаусса На первом шаге исключим неизвестное х1 из всех уравнений системы (1), кроме первого. Пусть коэффициент . Назовем его ведущим элементом. Разделим первое уравнение системы (1) на а11. Получим уравнение: где Исключим х1 из второго и третьего уравнений системы (1). Для этого вычтем из них уравнение (2), умноженное на коэффициент при х1 (соответственно а21 и а31). Система примет вид: Верхний индекс (1) указывает, что речь идет о коэффициентах первой преобразованной системы. (1) (2) (3)

№ слайда 9 2-ой шаг метода Гаусса На втором шаге исключим неизвестное х2 из третьего ура
Описание слайда:

2-ой шаг метода Гаусса На втором шаге исключим неизвестное х2 из третьего уравнения системы (3). Пусть коэффициент . Выберем его за ведущий элемент и разделим на него второе уравнение системы (3), получим уравнение: где Из третьего уравнения системы (3) вычтем уравнение (4), умноженное на Получим уравнение: Предполагая, что находим (4)

№ слайда 10 В результате преобразований система приняла вид: Система вида (5) называется
Описание слайда:

В результате преобразований система приняла вид: Система вида (5) называется треугольной. Процесс приведения системы (1) к треугольному виду (5) (шаги 1 и 2) называют прямым ходом метода Гаусса. Нахождение неизвестных из треугольной системы называют обратным ходом метода Гаусса. Для этого найденное значение х3 подставляют во второе уравнение системы (5) и находят х2. Затем х2 и х3 подставляют в первое уравнение и находят х1. (5)

№ слайда 11 Если в ходе преобразований системы получается противоречивое уравнение вида 0
Описание слайда:

Если в ходе преобразований системы получается противоречивое уравнение вида 0 = b, где b  0, то это означает, что система несовместна и решений не имеет. В случае совместной системы после преобразований по методу Гаусса, составляющих прямой ход метода, система т линейных уравнений с п неизвестными будет приведена или к треугольному или к ступенчатому виду. Треугольная система имеет вид: Такая система имеет единственное решение, которое находится в результате проведения обратного хода метода Гаусса. Ступенчатая система имеет вид: Такая система имеет бесчисленное множество решений.

№ слайда 12 Рассмотрим на примере Покажем последовательность решения системы из трех урав
Описание слайда:

Рассмотрим на примере Покажем последовательность решения системы из трех уравнений методом Гаусса Поделим первое уравнение на 2, затем вычтем его из второго (a21=1, поэтому домножение не требуется) и из третьего, умножив предварительно на a31=3 Поделим второе уравнение полученной системы на 2, а затем вычтем его из третьего, умножив предварительно на 4,5 (коэффициент при x2) Тогда x3=-42/(-14)=3; x2=8-2x3=2 x1=8-0,5x2-2x3=1

№ слайда 13 Метод Крамера Метод Крамера—способ решения квадратных систем линейных алгебра
Описание слайда:

Метод Крамера Метод Крамера—способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно). Создан Габриэлем Крамером в 1751 году.

№ слайда 14 Габриэль Крамер (31 июля 1704, Женева, Швейцария—4 января 1752, Баньоль-сюр-С
Описание слайда:

Габриэль Крамер (31 июля 1704, Женева, Швейцария—4 января 1752, Баньоль-сюр-Сез, Франция) Биография Крамер родился в семье франкоязычного врача. В 18 лет защитил диссертацию. В 20-летнем возрасте Крамер выставил свою кандидатуру на вакантную должность преподавателя на кафедре философии Женевского университета. 1727: Крамер 2 года путешествовал по Европе, заодно перенимая опыт у ведущих математиков — Иоганна Бернулли и Эйлера,Галлея и де Муавра, Мопертюи и Клеро. В свободное от преподавания время Крамер пишет многочисленные статьи на самые разные темы: геометрия, история математики, философия, приложения теории вероятностей. 1751: Крамер получает серьёзную травму после дорожного инцидента с каретой. Доктор рекомендует ему отдохнуть на французском курорте, но там его состояние ухудшается, и 4 января 1752 года Крамер умирает.

№ слайда 15 Рассмотрим систему линейных уравнений с квадратной матрицей A , т.е. такую, у
Описание слайда:

Рассмотрим систему линейных уравнений с квадратной матрицей A , т.е. такую, у которой число уравнений совпадает с числом неизвестных: a11x1+a12x2+…+a1nxn=b1 a21x1+a22x2+…+a2nxn=b2 … … an1x1+an2x2+…+annxn=bn Теорема. Cистема

№ слайда 16 Имеет единственное решение тогда и только тогда, когда определитель матрицы э
Описание слайда:

Имеет единственное решение тогда и только тогда, когда определитель матрицы этой системы отличен от нуля: a11 a12 … a1n a21 a22 … a2n … … an1 an2 … ann ≠ 0

№ слайда 17 В этом случае решение можно вычислить по формуле Крамера
Описание слайда:

В этом случае решение можно вычислить по формуле Крамера

№ слайда 18 Для получения значения xk в числитель ставится определитель, получающийся из
Описание слайда:

Для получения значения xk в числитель ставится определитель, получающийся из det(A) заменой его k-го столбца на столбец правых частей Пример. Решить систему уравнений :

№ слайда 19 Решение.
Описание слайда:

Решение.

№ слайда 20 Найдите оставшиеся компоненты решения. Формулы Крамера не представляют практи
Описание слайда:

Найдите оставшиеся компоненты решения. Формулы Крамера не представляют практического значения в случае систем с числовыми коэффициентами: вычислять по ним решения конкретных систем линейных уравнений неэффективно, поскольку они требуют вычисления (n+1)-го определителя порядка n , в то время как метод Гаусса фактически эквивалентен вычислению одного определителя порядка n . Тем не менее, теоретическое значение формул Крамера заключается в том, что они дают явное представление решения системы через ее коэффициенты. Например, с их помощью легко может быть доказан результат Решение системы линейных уравнений с квадратной матрицей A является непрерывной функцией коэффициентов этой системы при условии, что det A не равно 0 .

№ слайда 21 Найдите оставшиеся компоненты решения. Кроме того, формулы Крамера начинают к
Описание слайда:

Найдите оставшиеся компоненты решения. Кроме того, формулы Крамера начинают конкурировать по вычислительной эффективности с методом Гаусса в случае систем, зависящих от параметра. зависящей от параметра , определить предел отношения компонент решения:

№ слайда 22 Решение. В этом примере определитель матрицы системы равен . По теореме Краме
Описание слайда:

Решение. В этом примере определитель матрицы системы равен . По теореме Крамера система совместна при . Для случая применением метода Гаусса убеждаемся, что система несовместна. Тем не менее, указанный предел существует. Формулы Крамера дают значения компонент решения в виде и, хотя при         каждая из них имеет бесконечный предел, их отношение стремится к пределу конечному.

№ слайда 23 Ответ. 	Приведенный пример поясняет также каким образом система линейных урав
Описание слайда:

Ответ. Приведенный пример поясняет также каким образом система линейных уравнений, непрерывно зависящая от параметра, становится несовместной: при стремлении параметра к какому-то критическому значению (обращающему в нуль определитель матрицы системы) хотя бы одна из компонент решения «уходит на бесконечность».

№ слайда 24 Вывод Рассмотренный в данной презентации Метод Крамера позволяет решать линей
Описание слайда:

Вывод Рассмотренный в данной презентации Метод Крамера позволяет решать линейные системы, но удобнее решать системы линейных уравнений с помощью метода Гаусса, который находит широкое применение и содержится в пакетах стандартных программ для ЭВМ.

№ слайда 25 Использованные источники В.С. Щипачев, Высшая математика Ильин В. А., Позняк
Описание слайда:

Использованные источники В.С. Щипачев, Высшая математика Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов. http://ru.wikipedia.org Волков Е.А. Численные методы. В.Е. Шнейдер и др., Краткий курс высшей математики,том I.

Общая информация

Номер материала: ДБ-194633

Похожие материалы