Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация по геометрии "Касательная к окружности"

Презентация по геометрии "Касательная к окружности"

Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

К ОПЛАТЕ ЗА ОДНОГО УЧЕНИКА: ВСЕГО 28 РУБ.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика
Урок – изучение нового материала
Взаимное расположение прямой и окружности Возможны три случая Имеют две общие...
Прямая и окружность имеют две общие точки А В О Н p Точки А и В лежат на окру...
Прямая и окружность имеют одну общую точку d=r OH=r Точка Н лежит на окружнос...
Прямая и окружность не имеют общих точек d>r OH>r, OM ≥ OH > r Прямая и окруж...
КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ Определение. Прямая, имеющая с окружностью только од...
А С В На рисунке точки А, В, С лежат на одной прямой. .
(О свойстве касательной) Касательная к окружности перпендикулярна к радиусу,...
Каким может быть взаимное расположение прямой и окружности? Как называется пр...
№ 631 а) d < r, прямая и окружность имеют две общие точки, б) d > r, прямая и...
Решите задачу. В М О 5см Дано: Окр(О; r), ВМ – касательная, С – точка касания...
Решите задачу А О В С 3см 2см Дано: Окр(O; r ), АВ – касательная, В – точка к...
№ 635 О А р ? Дано: Окр (о; r), р – касательная, АВ – хорда, АВ = r. Найти: В...
Домашнее задание №631(в.г) №634 Итоги урока.
ВСЕМ СПАСИБО ЗА УРОК. ДО СВИДАНИЯ!
1 из 15

Описание презентации по отдельным слайдам:

№ слайда 1 Урок – изучение нового материала
Описание слайда:

Урок – изучение нового материала

№ слайда 2 Взаимное расположение прямой и окружности Возможны три случая Имеют две общие
Описание слайда:

Взаимное расположение прямой и окружности Возможны три случая Имеют две общие точки ( d<r) 2. Имеют одну общую точку (d=r) 3. Не имеют общих точек (d>r) r – радиус окружности, d – расстояние от центра окружности до прямой с р р р

№ слайда 3 Прямая и окружность имеют две общие точки А В О Н p Точки А и В лежат на окру
Описание слайда:

Прямая и окружность имеют две общие точки А В О Н p Точки А и В лежат на окружности, являются общими точками прямой р и окружности d<r

№ слайда 4 Прямая и окружность имеют одну общую точку d=r OH=r Точка Н лежит на окружнос
Описание слайда:

Прямая и окружность имеют одну общую точку d=r OH=r Точка Н лежит на окружности и является общей точкой прямой и окружности Н М О d=r р

№ слайда 5 Прямая и окружность не имеют общих точек d&gt;r OH&gt;r, OM ≥ OH &gt; r Прямая и окруж
Описание слайда:

Прямая и окружность не имеют общих точек d>r OH>r, OM ≥ OH > r Прямая и окружность не имеют общих точек О Н М d>r р

№ слайда 6 КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ Определение. Прямая, имеющая с окружностью только од
Описание слайда:

КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ Определение. Прямая, имеющая с окружностью только одну общую точку, называется к окружности. А А - точка касания О р Это интересно! касательной

№ слайда 7 А С В На рисунке точки А, В, С лежат на одной прямой. .
Описание слайда:

А С В На рисунке точки А, В, С лежат на одной прямой. .

№ слайда 8 (О свойстве касательной) Касательная к окружности перпендикулярна к радиусу,
Описание слайда:

(О свойстве касательной) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания . 1.Пусть р ОА, тогда ОА – наклонная к прямой р. 2. Так как перпендикуляр , проведенный из точки О к прямой р, меньше наклонной ОА, то расстояние от центра О окружности до прямой р меньше радиуса. 3. Из пп. 1 и 2 следует прямая и окружность имеют две общие точки, что противоречит условию ( прямая р – касательная ). Поэтому р ОА. Теорема доказана. Дано: окр(О,ОА), р – касательная к окружности, А – точка касания. Доказать: р ОА Доказательство:

№ слайда 9 Каким может быть взаимное расположение прямой и окружности? Как называется пр
Описание слайда:

Каким может быть взаимное расположение прямой и окружности? Как называется прямая, которая имеет с окружностью две общих точки? Какая прямая называется касательной к окружности? Какая точка называется точкой касания прямой и окружности? Сформулируйте теорему о свойстве касательной ( к следующему уроку попробуй выучить доказательство). Предлагаем ответить на вопросы теста по изученной теме 1) На рисунке прямая по отношению к окружности А секущая Б касательная С нет правильного ответа 2) Прямая – касательная по отношению к окружности. Она образует с радиусом, проведенным в точку касания угол А острый Б прямой С тупой

№ слайда 10 № 631 а) d &lt; r, прямая и окружность имеют две общие точки, б) d &gt; r, прямая и
Описание слайда:

№ 631 а) d < r, прямая и окружность имеют две общие точки, б) d > r, прямая и окружность не имеют общих точек, д) d = r, прямая и окружность имеют одну общую точку

№ слайда 11 Решите задачу. В М О 5см Дано: Окр(О; r), ВМ – касательная, С – точка касания
Описание слайда:

Решите задачу. В М О 5см Дано: Окр(О; r), ВМ – касательная, С – точка касания. Найти: расстояние от точки О до прямой ВМ. Ответ. 5см. С

№ слайда 12 Решите задачу А О В С 3см 2см Дано: Окр(O; r ), АВ – касательная, В – точка к
Описание слайда:

Решите задачу А О В С 3см 2см Дано: Окр(O; r ), АВ – касательная, В – точка касания, СО=3см, СА=2см. Найти: АВ ? Решение. 1) ОС=ОВ=3см (радиусы одной окружности). По теореме о свойстве касательной ОВ, АОВ – равнобедренный. По теореме Пифагора найдём АВ, АВ=4см. Ответ. 4см.

№ слайда 13 № 635 О А р ? Дано: Окр (о; r), р – касательная, АВ – хорда, АВ = r. Найти: В
Описание слайда:

№ 635 О А р ? Дано: Окр (о; r), р – касательная, АВ – хорда, АВ = r. Найти: ВАО ? В Решение. В ВАО, ОА=ОВ=АВ=r. Поэтому ВАО – равнобед- ренный, и ВАО=60 ВАО=60 Ответ.

№ слайда 14 Домашнее задание №631(в.г) №634 Итоги урока.
Описание слайда:

Домашнее задание №631(в.г) №634 Итоги урока.

№ слайда 15 ВСЕМ СПАСИБО ЗА УРОК. ДО СВИДАНИЯ!
Описание слайда:

ВСЕМ СПАСИБО ЗА УРОК. ДО СВИДАНИЯ!

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy



Автор
Дата добавления 28.08.2015
Раздел Математика
Подраздел Презентации
Просмотров235
Номер материала ДA-019340
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх