Для всех учителей из 37 347 образовательных учреждений по всей стране

Скидка до 75% на все 778 курсов

Выбрать курс
Получите деньги за публикацию своих
разработок в библиотеке «Инфоурок»
Добавить авторскую разработку
и получить бесплатное свидетельство о размещении материала на сайте infourok.ru
Инфоурок Геометрия ПрезентацииПрезентация по геометрии на тему «Многогранники.»

Презентация по геометрии на тему «Многогранники.»

библиотека
материалов
 « Правильные многогранники».

Описание презентации по отдельным слайдам:

1 слайд  « Правильные многогранники».
Описание слайда:

« Правильные многогранники».

2 слайд Из истории С древнейших времен наши представления о красоте связаны с симметр
Описание слайда:

Из истории С древнейших времен наши представления о красоте связаны с симметрией. Наверное, этим объясняется интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание выдающихся мыслителей. История правильных многогранников уходит в глубокую древность. Изучением правильных многогранников занимались Пифагор и его ученики. Их поражала красота, совершенство, гармония этих фигур. Пифагорейцы считали правильные многогранники божественными фигурами и использовали в своих философских сочинениях. Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона (427-347 до н. э.). Поэтому правильные многогранники также называются платоновыми телами. Каждый из правильных многогранников, а всего их пять, Платон ассоциировал с четырьмя земными элементами: земля (куб), вода (икосаэдр), огонь (тетраэдр), воздух (октаэдр), а также с неземным элементом - небом (додекаэдр). Знаменитый математик и астроном Кеплер построил модель Солнечной системы как ряд последовательно вписанных и описанных правильных многогранников и сфер.

3 слайд Определения правильных многогранников. Имеется несколько эквивалентных опреде
Описание слайда:

Определения правильных многогранников. Имеется несколько эквивалентных определений правильных многогранников. Одно из них звучит так: многогранник называется правильным, если существуют три концентрические сферы, одна из которых касается всех граней многогранника, другая касается всех его ребер и третья содержит все его вершины. Это определение напоминает одно из возможных определений правильного многоугольника: многоугольник называется правильным, если он вписан в некоторую окружность и описан около другой окружности, причем эти окружности концентричны. Другое определение: правильным многогранником называется такой выпуклый многогранник, все грани которого являются одинаковыми правильными многоугольниками и все двугранные углы попарно равны. Ещё одно определение правильных многогранников: многогранник называется правильным, если: он выпуклый все его грани являются равными правильными многоугольниками в каждой его вершине сходится одинаковое число граней все его двугранные углы равны.

4 слайд Существует всего пять правильных многогранников: Тетраэдр, куб, октаэдр, доде
Описание слайда:

Существует всего пять правильных многогранников: Тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. Тетраэдр Тетраэдр - это правильный многогранник, у которого грани правильные треугольники и в каждой вершине сходится по три ребра и по три грани. У тетраэдра: 4 грани, 4 вершины и 6 ребер.

5 слайд куб(гексаэдр) Куб (гексаэдр) - это правильный многогранник, у которого грани
Описание слайда:

куб(гексаэдр) Куб (гексаэдр) - это правильный многогранник, у которого грани – квадраты и в каждой вершине сходится по три ребра и три грани. У него: 6 граней, 8 вершин и 12 ребер.

6 слайд Октаэдр Правильный октаэдр - правильный многогранник, у которого грани- прави
Описание слайда:

Октаэдр Правильный октаэдр - правильный многогранник, у которого грани- правильные треугольники и в каждой вершине сходится по четыре ребра и по четыре грани. У октаэдра: 8 граней, 6 вершин и 12 ребер

7 слайд Икосаэдр Икосаэдр – это правильный многогранник, у которого грани правильные
Описание слайда:

Икосаэдр Икосаэдр – это правильный многогранник, у которого грани правильные треугольники, но в отличие от тетраэдра и октаэдра в каждой вершине сходится по 5 ребер.

8 слайд Додекаэдр Додекаэдр – это правильный многогранник, у которого грани правильны
Описание слайда:

Додекаэдр Додекаэдр – это правильный многогранник, у которого грани правильные пятиугольники и в каждой вершине сходится по три ребра и три грани. У додекаэдра:12 граней, 20 вершин и 30 ребер.

9 слайд Некоторые свойства правильных многогранников. В выпуклом многограннике все г
Описание слайда:

Некоторые свойства правильных многогранников. В выпуклом многограннике все грани – выпуклые многоугольники. 2. Выпуклый многогранник может быть представлен из пирамид с общей вершиной, основания которых образуют поверхность многогранника.  3. Выпуклый многогранник лежит по одну сторону от плоскости каждой своей грани.  4. В 1752 году Леонард Эйлер доказал свойство, связывающее число его вершин, ребер и граней, получившее название теоремы Эйлера, справедливой для любого выпуклого многогранника. Число вершин – число ребер + число граней = 2 (1) 5. Других видов правильных многогранников – нет. 6. Правильным многогранникам свойственна двойственность: если считать центры граней тетраэдра вершинами нового многогранника, то вновь получится тетраэдр; центры граней куба образуют октаэдр; центры граней октаэдра образуют куб; центры граней додекаэдра образуют икосаэдр; центры граней икосаэдра – додекаэдр.Кроме того, ребра правильного многогранника равны между собой и равны также все двугранные углы, содержащие две грани с общим ребром.  

10 слайд ТЕОРЕМА ЭЙЛЕРА Эйлерова характеристика всякого многогранника нулевого рода ра
Описание слайда:

ТЕОРЕМА ЭЙЛЕРА Эйлерова характеристика всякого многогранника нулевого рода равна2. Иначе говоря, между e, f и k любого многогранника нулевого рода имеет место зависимость . Где е – число вершин, f – число граней, k – число ребер e + f – k = 2

11 слайд Подсчитаем число вершин (В), граней (Г), рёбер (Р) и запишем результаты в та
Описание слайда:

Подсчитаем число вершин (В), граней (Г), рёбер (Р) и запишем результаты в таблицу.

12 слайд В последней колонке для всех многогранников один и тот же результат: В+Г- Р=
Описание слайда:

В последней колонке для всех многогранников один и тот же результат: В+Г- Р=2. Что и требовалось Самое удивительное в этой формуле, что она верна не только для правильных многогранников, но и для всех многогранников!

13 слайд Правильные многогранники можно встретить повсюду Правильные многогранники в п
Описание слайда:

Правильные многогранники можно встретить повсюду Правильные многогранники в природе: поваренная соль состоит из кристаллов в форме куба; скелет одноклеточного организма феодарии представляет собой икосаэдр; минерал сильвин также имеет кристаллическую решетку в форме куба; кристаллы пирита имеют форму додекаэдра, молекулы воды имеют форму тетраэдра; минерал куприт образует кристаллы в форме октаэдров, пчелиные соты.

14 слайд Правильные многогранники в архитектуре Галикарнасский мавзолей, Храм Артемиды
Описание слайда:

Правильные многогранники в архитектуре Галикарнасский мавзолей, Храм Артемиды Эфесской, Башня Сююмбике, Мечеть Кул-Шариф, Башни Азриэли, Уникс, КГУ, Спасская башня Кремля.  

15 слайд Правильные многогранники искусстве Многогранники в живописи Титан Возрождения
Описание слайда:

Правильные многогранники искусстве Многогранники в живописи Титан Возрождения, в работах Альбрехт Дюрер (1471- 1528), в графических фантазиях Маурица Корнилиса Эшера (1898-1972), в работе «Тайная Вечеря» Сальвадора Дали.

16 слайд МАГИЯ «ИНЬ» И «ЯНЬ» В МНОГОГРАННИКАХ Существует концепция, что вершина многог
Описание слайда:

МАГИЯ «ИНЬ» И «ЯНЬ» В МНОГОГРАННИКАХ Существует концепция, что вершина многогранника отдает энергию, а плоскость энергию принимает. В том случае, если в многограннике вершин больше чем плоскостей, то он обладает энергией «Янь». В противоположном случае энергией «Инь». Теперь применительно о концепции Инь-Янь к многогранникам. Рассмотрим соотношение вершин (энергия «Янь») и плоскостей (энергия «Инь») в пяти правильных многогранниках:

17 слайд Тетраэдр имеет четыре вершины и четыре грани, что приводит к равенству Инь–
Описание слайда:

Тетраэдр имеет четыре вершины и четыре грани, что приводит к равенству Инь–Янь. У октаэдра существует шесть точек-вершин излучения и восемь точек-центров граней поглощения. Следовательно, октаэдр поглощает больше энергии, чем излучает, поэтому он относится к женскому началу «Инь». Гексаэдр (куб) имеет 8 излучающих энергию точек-вершин и шесть граней, в которых происходит поглощение энергии. Так как излучающих точек больше, чем поглощающих, то куб относится к мужскому принципу «Янь». Додекаэдр имеет 20 вершин и 12 граней, и поэтому он выражает принцип «Янь». У икосаэдра 12 вершин и 20 граней, имеющих вид правильных треугольников, поэтому он выражает принцип «Инь».

18 слайд Каждому геометрическому телу соответствует определённая стихия: куб – Земля,
Описание слайда:

Каждому геометрическому телу соответствует определённая стихия: куб – Земля, икосаэдр – Вода, тетраэдр – Огонь, октаэдр – Воздух, додекаэдр – Эфир.  Сечение этих геометрических тел даёт плоские геометрические фигуры: Земля – квадрат, Вода –шестиугольник, Огонь -треугольник, Воздух – ромб, Эфир – восьмиугольник.  Эти фигуры отражают мировые энергии Инь – Янь: Огонь и Воздух – Янь, Земля и Вода – Инь. Все геометрические тела и их фигуры связаны с «золотым сечением» и своей формой оказывают положительное влияние на энергоинформационное состояние человека. Эффект формы даёт вот какую особенность: любая точка, линия, плоская фигура, объемное тело – кристалл создают вокруг себя энергоинформационное пространство, которое приводит к резонансу или гармонии весь окружающий мир, в том числе все физические и биологические тела. Эта идея использовалась при строительстве пирамид,как энергетических структур. Пирамиды воздвигались в Местах Силы. Цель их создания – гармонизация окружающего пространства, передача и приём информационных потоков. Но главное – защита энергетического тела Земли. Пирамиды выполняют функцию мощных «локаторов», которые охраняют территорию в несколько сот километров вокруг себя и над собой. Они способны гасить сейсмические волны землетрясений, успокаивать ураганы и наводнения, не дают разбушеваться геологическим катаклизмам. Предназначение пирамид Земли, гор пирамидальной формы и даже сопок – защита нашей планеты от жёстких космических излучений. Вторая их задача – направлять энергию Земли во время сдвига полюсов в особые точки планеты – на Северном и Южном полюсе. Пирамиды аккумулируют энергии, создавая энергоинформационные потоки, направленные в Космос, а также дают возможность получать информацию из Космоса.

19 слайд
Описание слайда:

20 слайд Каждый минерал на Земле частично отражает структуру Вселенной, и поэтому под
Описание слайда:

Каждый минерал на Земле частично отражает структуру Вселенной, и поэтому подчиняется платоновскому принципу гармонии: то есть в одном камне не в равной степени могут сосуществовать свойства всех четырех стихий. Цвет и огранка камня определенным образом ориентируют его свойства, выявляя скрытую, соответствующую планете или созвездию астральную энергию. Вот почему жрецы и маги в древности держали в тайне формы огранки, соответствующие каждому виду минерала. Древнегреческий философ Гераклит заметил, что «скрытая гармония сильнее явной». Перед покупкой драгоценного камня необходимо хорошо оценить его огранку, ведь именно она влияет на способ проявления энергии самоцвета. Иногда минералы винят в их способности приносить несчастья, их даже называют проклятыми. Но, на самом деле, самоцветы не в чем винить, так как они являются прямым отражением поступков своих владельцев. Они лишь перерабатывают информацию и энергию, обращая ее либо в позитив, либо в негатив. Поэтому не следует пускать все на самотек, быть безжалостным и эгоистичным. Необходимо делать жертвы во имя достижения цели, и если Вы готовы пойти на это, то камни в бриллиантовой огранке всегда помогут достичь успеха. В противном же случае, если Вы не хотите работать над собой, развиваться и получать пользу от своих поступков, то самоцветы будут приносить в Вашу жизнь лишь негатив.

Курс повышения квалификации
Курс профессиональной переподготовки
Учитель математики
Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:
также Вы можете выбрать тип материала:
Общая информация

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Репетиторы онлайн

✅ Подготовка к ЕГЭ/ГИА
✅ По школьным предметам

✅ На балансе занятий — 1

Подробнее