Инфоурок / Математика / Презентации / Презентация по геометрии на тему "Перпендикулярность прямой и плоскости "

Презентация по геометрии на тему "Перпендикулярность прямой и плоскости "

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
 Перпендикулярность прямой и плоскости
Перпендикулярные прямые в пространстве Две прямые в пространстве называются п...
Лемма Если одна из двух параллельных прямых перпендикулярна к этой прямой, то...
Параллельные прямые, перпендикулярные к плоскости Прямая называется перпендик...
Теорема: Если одна из двух параллельных прямых перпендикулярна к плоскости, т...
Теорема: Если две прямые перпендикулярны к плоскости, то они параллельны. Дан...
Признак перпендикулярности прямой и плоскости Теорема: Если прямая перпендику...
Теорема о прямой, перпендикулярной к плоскости Теорема: Через любую точку про...
Авторы: Александрова Аня 10Б Васильева Катя 10Б Васильева Надя 10Б Гаврилова...
9 1

Описание презентации по отдельным слайдам:

№ слайда 1  Перпендикулярность прямой и плоскости
Описание слайда:

Перпендикулярность прямой и плоскости

№ слайда 2 Перпендикулярные прямые в пространстве Две прямые в пространстве называются п
Описание слайда:

Перпендикулярные прямые в пространстве Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90°. Перпендикулярность прямых а и b обозначается так: а ⊥b. Перпендикулярные прямые могут пересекаться и могут быть скрещивающимися. На этом рисунке перпендикулярные прямые а и b пересекаются, а перпендикулярные прямые а и с скрещивающиеся

№ слайда 3 Лемма Если одна из двух параллельных прямых перпендикулярна к этой прямой, то
Описание слайда:

Лемма Если одна из двух параллельных прямых перпендикулярна к этой прямой, то и другая прямая перпендикулярна к этой прямой Дано: а ⃦b и а ⊥ с. Доказать: b ⊥ c. Доказательство: Через произвольную точку М пространства, не лежащую на данных прямых, проведём прямые а и с. Т.к. а ⊥с, то ∠АМС =90° Т.к. а ⃦b , а ⃦ МА, то b ⃦ МА. Итак, b ⃦ МА, с ⃦ МС, ∠ АМС = 90°, т. е. b ⊥ c. Лемма доказана.

№ слайда 4 Параллельные прямые, перпендикулярные к плоскости Прямая называется перпендик
Описание слайда:

Параллельные прямые, перпендикулярные к плоскости Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости. Перпендикулярность прямой a и плоскости α обозначается так: а ⊥ α.

№ слайда 5 Теорема: Если одна из двух параллельных прямых перпендикулярна к плоскости, т
Описание слайда:

Теорема: Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости. Дано: а ║а1 , а ⊥ α. Доказать: а 1║ α Доказательство: Проведем какую-нибудь прямую х в плоскости α. Так как а перпендикулярна α, то а перпендикулярна х. По лемме о перпендикулярности двух параллельных прямых к третьей а1 перпендикулярна х. Таким образом, прямая а1 перпендикулярна к любой прямой, лежащей в плоскости α, т.е. а1 перпендикулярна α. Теорема доказана.  

№ слайда 6 Теорема: Если две прямые перпендикулярны к плоскости, то они параллельны. Дан
Описание слайда:

Теорема: Если две прямые перпендикулярны к плоскости, то они параллельны. Дано: a ⊥α,b ⊥α (а) Доказать : a ║ b . Доказательство: Через какую-нибудь точку M прямой b проведем прямую b1, параллельную прямой a. По предыдущей теореме b1 ⊥α. Докажем ,что прямая b1 совпадает с прямой b .Тем самым будет доказано ,что a ║ b .Допустим ,что прямые b и b1 не совпадают .Тогда в плоскости β,содержащей прямые b и b1, через точку М проходят две прямые, перпендикулярные к прямой c ,по которой пересекаются плоскости α и β (б).Но это невозможно, следовательно, a║b. Теорема доказана.

№ слайда 7 Признак перпендикулярности прямой и плоскости Теорема: Если прямая перпендику
Описание слайда:

Признак перпендикулярности прямой и плоскости Теорема: Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости. Дано: а ⊥р, а ⊥q, р и q лежат в плоскости α. р ⋂q = О. Доказать: а ┴ α Доказательство: Рассмотрим случай, когда прямая а проходит через т. О(рис. а). Проведём через т.О прямую l, параллельную прямой m . Отметим на прямой а точки А и В, чтобы АО=ОВ, и проведём в плоскости α прямую, пересекающие прямые р, q, и l соответственно в т. Р, Q, и L. Т.к. р и q – серединные перпендикуляры к отрезку АВ, то АР=ВР и АQ=ВQ. Следовательно, ΔАРQ= ΔВРQ по трём сторонам, поэтому углы АРQ и ВРQ равны ΔАРL= ΔВРL, поэтому АL=BL. Следовательно ΔАВL-равнобедренный и l ⊥а. Т.к. l ║m, l ⊥ а, то m ⊥а. Итак а ⊥ α. Рассмотрим случай, когда прямая а не проходит через т.О. Проведём через т.О прямую а, а1 ║а. По лемме а1 ⊥ р и а1 ⊥ q, поэтому а1 ⊥ α. Отсюда, а ⊥ α. Теорема доказана.

№ слайда 8 Теорема о прямой, перпендикулярной к плоскости Теорема: Через любую точку про
Описание слайда:

Теорема о прямой, перпендикулярной к плоскости Теорема: Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости и притом только одна. Доказательство: Данную плоскость обозначим α, а произвольную точку пространства — буквой М. Докажем: 1) через точку М проходит прямая, перпенди-1ярная к плоскости а; 2) такая прямая только одна. Проведем в плоскости α произвольную прямую а и рассмотрим плоскостьβ, проходящую че-; точку М и перпендикулярную к прямой а. Обозначим буквой b прямую, по которой пересекаются плоскости α и β. В плоскости β через точку М проведем прямую с, перпендикулярную к прямой b. Прямая с и есть искомая прямая. В самом деле, она перпендикулярна к плоскости α, т.к. перпендикулярна к двум пересекающимся прямым этой плоскости (с ⊥b по по построению и с ⊥а, так как (β ⊥ α). 2)Предположим, что через точку М проходит еще одна прямая (обозначим ее черезс1), перпендикулярная к плоскости α. Тогда с1 ║ с , что невозможно, т. к. прямые с1 и с пересекаются в точке М. Т.о., через точку М проходит только одна прямая, перпендикулярная плоскостиα. Теорема доказана.

№ слайда 9 Авторы: Александрова Аня 10Б Васильева Катя 10Б Васильева Надя 10Б Гаврилова
Описание слайда:

Авторы: Александрова Аня 10Б Васильева Катя 10Б Васильева Надя 10Б Гаврилова Настя 10Б Егорова Люда 10Б Научный консультант : учитель математики СОШ №6 г.Чебоксары Маркова З.Г. 2008г

Общая информация

Номер материала: ДВ-176256

Похожие материалы

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»