Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация по геометрии "Первый признак подобия"

Презентация по геометрии "Первый признак подобия"

Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика
Первый признак подобия треугольников
Вспомним подобные треугольники: Определение: треугольники называются подобным...
Теорема. Если два угла одного треугольника соответственно равны двум углам др...
Решение задачи Диагонали трапеции АВСК пересекаются в точке О. Площади треуго...
Нужный вывод Доказательство: ВАМК – параллелограмм, значит, АМ = ВК Вывод: ес...
.
1 из 19

Описание презентации по отдельным слайдам:

№ слайда 1 Первый признак подобия треугольников
Описание слайда:

Первый признак подобия треугольников

№ слайда 2 Вспомним подобные треугольники: Определение: треугольники называются подобным
Описание слайда:

Вспомним подобные треугольники: Определение: треугольники называются подобными, если углы одного треугольника равны углам другого треугольника и стороны одного треугольника пропорциональны сходственным сторонам другого. Сходственными сторонами в подобных треугольниках называются стороны, лежащие против равных углов.

№ слайда 3 Теорема. Если два угла одного треугольника соответственно равны двум углам др
Описание слайда:

Теорема. Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны. (по двум углам) Доказательство: По теореме об отношении площадей треугольников, имеющих равный угол, получаем: Итак, углы одного треугольника равны углам другого треугольника, а их сходственные стороны пропорциональны, значит, по определению треугольники АВС и МРК подобны.

№ слайда 4
Описание слайда:

№ слайда 5
Описание слайда:

№ слайда 6
Описание слайда:

№ слайда 7
Описание слайда:

№ слайда 8
Описание слайда:

№ слайда 9
Описание слайда:

№ слайда 10
Описание слайда:

№ слайда 11
Описание слайда:

№ слайда 12
Описание слайда:

№ слайда 13
Описание слайда:

№ слайда 14
Описание слайда:

№ слайда 15 Решение задачи Диагонали трапеции АВСК пересекаются в точке О. Площади треуго
Описание слайда:

Решение задачи Диагонали трапеции АВСК пересекаются в точке О. Площади треугольников ВОС и АОК относятся как 1: 9. Сумма оснований ВС и АК равна 4,8 см. Найдите основания трапеции. Дано: АВСК – трапеция, ВС + АК = 4,8 см, SСОВ : SАОК = 1 : 9. Найти: ВС, АК. Решение: Значит, по двум углам треугольники СОВ и АОК подобны, следовательно, SСОВ : SАОК = k2, а по условию SСОВ : SАОК = 1 : 9, т. е. k2 = 1/9; k = 1/3. По доказанному треугольники СОВ и АОК подобны, следовательно, ВС : АК = k, т. е. ВС : АК = 1/3, значит, ВС = 1/3 АК или АК = 3 ВС. А по условию ВС + АК = 4,8 см, значит, ВС + 3 ВС = 4,8; 4 ВС = 4,8. Получаем: ВС = 1,2 см, АК = 4,8 – 1,2 = 3,6(см). Ответ: ВС = 1,2 см, АК = 3,6 см.

№ слайда 16 Нужный вывод Доказательство: ВАМК – параллелограмм, значит, АМ = ВК Вывод: ес
Описание слайда:

Нужный вывод Доказательство: ВАМК – параллелограмм, значит, АМ = ВК Вывод: если стороны угла пересечены параллельными прямыми, то отрезки, образованные последовательно на одной стороне угла, пропорциональны отрезкам, образованным последовательно на другой стороне угла.

№ слайда 17
Описание слайда:

№ слайда 18
Описание слайда:

№ слайда 19 .
Описание слайда:

.

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy

Автор
Дата добавления 14.06.2016
Раздел Математика
Подраздел Презентации
Просмотров45
Номер материала ДБ-121737
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх