Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Презентации / Презентация по геометрии " ПЛАНИМЕТРИЯ НА ЕДИНОМ ГОСУДАРСТВЕННОМ ЭКЗАМЕНЕ ПО МАТЕМАТИКЕ"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Презентация по геометрии " ПЛАНИМЕТРИЯ НА ЕДИНОМ ГОСУДАРСТВЕННОМ ЭКЗАМЕНЕ ПО МАТЕМАТИКЕ"

библиотека
материалов
ПЛАНИМЕТРИЯ НА ЕДИНОМ ГОСУДАРСТВЕННОМ ЭКЗАМЕНЕ Презентация выполнена по матер...
Во многих задачах встречается окружность, касающаяся сторон угла. Напомним,...
Пример 1 Так как ОА ﬩ ВА, то в треугольнике АВО АВ= =24. Тогда ВА = 24. В тре...
Пример 2 Окружность с центром О касается сторон угла В в точках А и С. Радиус...
Пример 3 Отрезок ВО – биссектриса треугольника АВМ, следовательно, ВА : АО =...
Пример 4 Окружность с центром О касается сторон угла В в точках А и С. Отрезо...
Если окружность вписана в треугольник или четырехугольник, то она касается с...
Пример 5 Данная Окружность касается сторон угла А в точках Т и М, следователь...
Пример 6 Луч ВМ = биссектриса угла В, значит, АМ : СМ = АВ : СВ = 5 : 3. Пуст...
Пример 7 Пусть луч АО пересекает сторону ВС в точке Н, тогда отрезок АН - бис...
. Пример задачи № 7, как и многие геометрические задачи, можно решить несколь...
Задачи для самостоятельного решения Задача 1. Окружность касается одной сторо...
Опыт работы показывает, что методика, предложенная авторами, очень помогает...
13 1

Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Описание презентации по отдельным слайдам:

№ слайда 1 ПЛАНИМЕТРИЯ НА ЕДИНОМ ГОСУДАРСТВЕННОМ ЭКЗАМЕНЕ Презентация выполнена по матер
Описание слайда:

ПЛАНИМЕТРИЯ НА ЕДИНОМ ГОСУДАРСТВЕННОМ ЭКЗАМЕНЕ Презентация выполнена по материалам статьи И.К. Варшавского, М.Я.Гаиашвили, Ю.А.Глазкова в журнале « Математика в школе» №2, 2001г.

№ слайда 2 Во многих задачах встречается окружность, касающаяся сторон угла. Напомним,
Описание слайда:

Во многих задачах встречается окружность, касающаяся сторон угла. Напомним, что в этом случае Центр окружности лежит на биссектрисе угла (О ϵ b). Отрезки, соединяющие точки качания с центром окружности, являются ее радиусами и перпендикулярны к сторонам угла (ОА = ОС = r, ОА ﬩ ВА, ОС ﬩ ВС). Равны расстояния от вершины угла до точек касания (ВА=ВС). ∠АВС + ∠АОС = 180˚. Даже этот краткий перечень свойств позволяет решать большое количество разнообразных задач.

№ слайда 3 Пример 1 Так как ОА ﬩ ВА, то в треугольнике АВО АВ= =24. Тогда ВА = 24. В тре
Описание слайда:

Пример 1 Так как ОА ﬩ ВА, то в треугольнике АВО АВ= =24. Тогда ВА = 24. В треугольнике АВС отрезок ВН – биссектриса и ВА = ВС, следовательно, ВН ﬩ АС и АН = СН. Найдем высоту АН прямоугольного треугольника АВО: АН · ВО = ВА · ОА, значит, = 6,72. Тогда АС = 2АН = 13,44. Ответ: 13,44. Окружность с центром О касается сторон угла В в точках А и С. Радиус окружности равен 7, ВО = 25. Найдите АС. Решение

№ слайда 4 Пример 2 Окружность с центром О касается сторон угла В в точках А и С. Радиус
Описание слайда:

Пример 2 Окружность с центром О касается сторон угла В в точках А и С. Радиус окружности равен 6, ВО = 2АО. Найдите площадь треугольника АОС. Решение Прежде всего отметим, что на чертеже к данной задаче совсем необязательно изображать окружность, поскольку важно представить лишь взаимное расположение отрезков и точек. В прямоугольнике АВО ВО = 2АО, следовательно, ∠АВО = 30˚. Отсюда получаем: ∠АВС=2∠АВО=60˚ и ∠АОС = 180˚- 60˚ = 120˚. SАОС = АО · СО · = · 36 · = 9 . Ответ: 9 .

№ слайда 5 Пример 3 Отрезок ВО – биссектриса треугольника АВМ, следовательно, ВА : АО =
Описание слайда:

Пример 3 Отрезок ВО – биссектриса треугольника АВМ, следовательно, ВА : АО = ВМ : МО = 18 : 9 = 2 : 1. Пусть АО = x, тогда АВ = 2х, и в прямоугольном треугольнике АВМ: 182 = (х + 9)2 + (2х)2. Далее получаем: 5х2 + 18х - 243 = 0. Положительный корень уравнения равен 5,4. Следовательно, АО = 5,4, ВА = 10,8. SВОМ = ВА · ОМ = · 10,8 · 9 = 48,6. Ответ: 48,6. Окружность с центром О касается сторон угла В в точках А и С. Лучи АО и ВС пересекаются в точке М, ОМ = 9, ВМ = 18. Найдите площадь ВОМ. Решение

№ слайда 6 Пример 4 Окружность с центром О касается сторон угла В в точках А и С. Отрезо
Описание слайда:

Пример 4 Окружность с центром О касается сторон угла В в точках А и С. Отрезок ВО пересекает окружность в точке К. Найдите периметр четырехугольника АКСО, если ∠В = 60˚, ВК = 12. Решение Пусть КО = r. В прямоугольном треугольнике АВО ∠АВО= АВС=30˚, следовательно, ВК + КО = 2АО, т.е. ВК + r = 2r. Отсюда получаем: r = ВК = 12. В прямоугольном треугольнике АВО ∠АОВ = 90˚ - ∠АВО = 60˚. Так как в треугольнике АОК ∠О = 60˚ и АО = ОК, то треугольник равносторонний. Значит, АК = r = 12. Аналогично получаем, что СК = r = 12.Итак, периметр четырехугольника АКСО равен 48. Ответ: 48.

№ слайда 7 Если окружность вписана в треугольник или четырехугольник, то она касается с
Описание слайда:

Если окружность вписана в треугольник или четырехугольник, то она касается сторон всех его углов, поэтому на основе перечисленных выше свойств окружности, вписанной в угол, получаем: Центр окружности является точкой пересечения биссектрис углов треугольника (четырехугольника). Радиусы, проведенные в точки касания, перпендикулярны к сторонам треугольника (четырехугольника). Равны расстояния от вершины угла до точек касания.

№ слайда 8 Пример 5 Данная Окружность касается сторон угла А в точках Т и М, следователь
Описание слайда:

Пример 5 Данная Окружность касается сторон угла А в точках Т и М, следовательно, АТ = АМ. Тогда ВТ = АВ – АТ = АС – АМ = МС. Пусть окружность касается стороны ВС в точке Н. Тогда ВТ = ВН и СМ = СН. Следовательно, ВН = ВТ = СМ = СН = 14 : 2 = 7 и АТ = АМ = 25 – 7 = 18. Так как равнобедренные треугольники АТМ и АВС подобны (почему?), имеем: = . Следовательно, ТМ = = = 10,08. Решение Окружность, вписанная в равнобедренный треугольник АВС, касается его боковых сторон АВ и АС в точках Т и М соответственно. Найдите ТМ, если АВ = 25, ВС = 14. Ответ: 10,08.

№ слайда 9 Пример 6 Луч ВМ = биссектриса угла В, значит, АМ : СМ = АВ : СВ = 5 : 3. Пуст
Описание слайда:

Пример 6 Луч ВМ = биссектриса угла В, значит, АМ : СМ = АВ : СВ = 5 : 3. Пусть АМ = 5х, тогда СМ = 3х и АС = 8х. Треугольники АТМ и АВС подобны (почему?), следовательно = , т.е. ТМ = = 3,75. Ответ: 3,75. В треугольник АВС вписана окружность с центром О. Лучи ВО и СО пересекают стороны АС и АВ в точках М и Т соответственно. Найдите МТ, если АВ = АС = 10, ВС = 6. Решение

№ слайда 10 Пример 7 Пусть луч АО пересекает сторону ВС в точке Н, тогда отрезок АН - бис
Описание слайда:

Пример 7 Пусть луч АО пересекает сторону ВС в точке Н, тогда отрезок АН - биссектриса треугольника АВС. По условию АВ = АС, следовательно, ВН = НС = 8 и АН ﬩ ВС. В прямоугольном треугольнике АВН АН = = 6. Луч ВО – биссектриса угла В, а, значит, отрезок ВО – биссектриса треугольника АВН, поэтому АО : ОН = АВ : ВН = 5 : 4. Пусть АО = 5х, тогда ОН = 4х и АН = 9х. Треугольники АТО и АВН подобны (почему?), следовательно, = . Отсюда получаем: ТО = = = . Значит, ТМ = = 8 . Ответ: 8 . В треугольник АВС вписана окружность с центром О. Прямая, проходящая через точку О параллельно прямой ВС, пересекает стороны АС и АВ в точках М и Т соответственно. Найдите МТ, если АВ = АС = 10, ВС = 16. Решение

№ слайда 11 . Пример задачи № 7, как и многие геометрические задачи, можно решить несколь
Описание слайда:

. Пример задачи № 7, как и многие геометрические задачи, можно решить несколькими способами. Например, для вычисления отрезка ОН можно использовать формулы S = pr и S = , где S - площадь треугольника, r – радиус вписанной окружности, h - высота треугольника, а – сторона, к которой проведена высота h. Замечание. Возвращаясь к чертежам задач 5, 6 и 7, отметим, что на каждом из них точка М располагается иначе, чем в других задачах (рис. 9). Особенно важно помнить, что в общем случае точка пересечения стороны с биссектрисой треугольника (M1) и точка касания стороны с вписанной окружностью (М2) не совпадают. Их совпадение возможно только на основании равнобедренного треугольника (точка Н).   Еще одно интересное соотношение для радиуса окружности, вписанной в равнобедренный треугольник, легко получить, применяя подобие. Рассмотрим равнобедренный треугольник АВС с основанием ВС. Центр окружности лежит на биссектрисе АН, являющейся также высотой и медианой треугольника. Прямоугольные треугольники АОТ и АВН подобны (почему?), следовательно, ТО : ВН = АТ : АН. Из пропорции получаем r = . Аналогично получается формула r = .

№ слайда 12 Задачи для самостоятельного решения Задача 1. Окружность касается одной сторо
Описание слайда:

Задачи для самостоятельного решения Задача 1. Окружность касается одной стороны прямого угла с вершиной А в точке О и пересекает его вторую сторону в точке С. Найдите радиус окружности, если АВ = 4, АС = 8. Задача 2. Из точки М к окружности с центром О проведены прямая МО и касательная МА (А – точка касания). Из точки А к прямой МО проведен перпендикуляр АВ. Найдите расстояние от точки М до центра, если АМ = 40 и АВ = 24. Задача 3. Через точку внутри круга радиуса 10 проведены две взаимно перпендикулярные хорды длиной 16 и 12. Найдите расстояние между серединами хорд. Задача 4. Две параллельные хорды окружности отсекают от нее дуги в 90˚. Длина одной из хорд равна 8. Найдите расстояние между хордами. Задача 5. Через середину радиуса окружности проведена перпендикулярная ему хорда. Найдите градусную меру меньшей из дуг, на которые окружность делится проведенной хордой. Задача 6. Основание равнобедренного треугольника вдвое меньше его боковой стороны, а высота, проведенная к основанию, равна 10. Найдите радиус вписанной в треугольник окружности. Задача 7. Окружность, вписанная в равнобедренный треугольник, касается его боковых сторон в точках M и N. Точка М делит сторону на отрезки 18 и 12, считая от основания треугольника. Найдите MN.

№ слайда 13 Опыт работы показывает, что методика, предложенная авторами, очень помогает
Описание слайда:

Опыт работы показывает, что методика, предложенная авторами, очень помогает при подготовке к ЕГЭ по математике. Учитель: Гудкова В.Д.


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 26.01.2016
Раздел Математика
Подраздел Презентации
Просмотров542
Номер материала ДВ-382423
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх