Инфоурок / Математика / Презентации / Презентация по математике для 7 классов

Презентация по математике для 7 классов

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Медианы, биссектрисы и высоты треугольника. Свойства равнобедренного треугол...
Медианы треугольника Медиа́на треуго́льника (лат. mediāna — средняя) ― отрез...
Биссектриса треугольника Биссектри́са (от лат. bi- «двойное», и sectio «разр...
Высоты треугольника Высота треугольника — перпендикуляр, проведённый из верш...
Равнобедренный треугольник — это треугольник, в котором две стороны равны ме...
Задача №1 Дано: в ∆ABC со сторонами АВ=3 см, ВС=3см и АС=2см проведена биссе...
Задача №2 Дано: В ∆ABC углы А и В равны соответственно 45 и 67 градусов. СН...
 Спасибо за внимание!
8 1

Описание презентации по отдельным слайдам:

№ слайда 1 Медианы, биссектрисы и высоты треугольника. Свойства равнобедренного треугол
Описание слайда:

Медианы, биссектрисы и высоты треугольника. Свойства равнобедренного треугольника

№ слайда 2 Медианы треугольника Медиа́на треуго́льника (лат. mediāna — средняя) ― отрез
Описание слайда:

Медианы треугольника Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны На рисунке АА₁ , ВВ₁ и СС₁ – медианы. Свойства медиан 1. Медианы треугольника точкой их пересечения делятся в отношении 2:1 (считая от вершин треугольника). 2. Медиана делит треугольник на два равновеликих треугольника. (Два треугольника равновелики, если их площади равны.) 3. Три медианы треугольника делят треугольник на шесть равновеликих треугольников

№ слайда 3 Биссектриса треугольника Биссектри́са (от лат. bi- «двойное», и sectio «разр
Описание слайда:

Биссектриса треугольника Биссектри́са (от лат. bi- «двойное», и sectio «разрезание») угла — луч с началом в вершине угла, делящий угол на два равных угла На рисунке отрезок EG – это биссектриса угла Е Свойства биссектрис Три биссектрисы треугольника пересекаются в одной точке 2. Биссектриса делит противоположную сторону на части, пропорциональные прилежащим к ней сторонам. 

№ слайда 4 Высоты треугольника Высота треугольника — перпендикуляр, проведённый из верш
Описание слайда:

Высоты треугольника Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В остроугольном треугольнике все три высоты лежат внутри треугольника.  В тупоугольном треугольнике две высоты пересекают продолжение сторон и лежат вне треугольника; третья высота пересекает сторону треугольника.

№ слайда 5 Равнобедренный треугольник — это треугольник, в котором две стороны равны ме
Описание слайда:

Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине. Равные стороны называются боковыми, а последняя — основанием.  Свойства равнобедренного треугольника 1 свойство: Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов.  2 свойство: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

№ слайда 6 Задача №1 Дано: в ∆ABC со сторонами АВ=3 см, ВС=3см и АС=2см проведена биссе
Описание слайда:

Задача №1 Дано: в ∆ABC со сторонами АВ=3 см, ВС=3см и АС=2см проведена биссектриса ВН. Найти: длины отрезков  АН и НС Ответ : АН=1 см НС=1см Решение: Т. к. АВ=ВС, то ∆АВС – равнобедренный, следовательно АН – биссектриса, медиана и высота АН=АС= ½ АС АН=АС= 2 : 2 = 1 А С Н В

№ слайда 7 Задача №2 Дано: В ∆ABC углы А и В равны соответственно 45 и 67 градусов. СН
Описание слайда:

Задача №2 Дано: В ∆ABC углы А и В равны соответственно 45 и 67 градусов. СН – высота СК - биссектриса Найти: угол НСК Ответ : Угол НСК=11 ˚ А С Н В Решение: Угол С равен: 180˚-(45˚+67˚)=68˚ Угол ВК=68˚ : 2 = 34˚ Высота, проведенная из угла С, делит данный треугольник на два прямоугольных треугольника. К 45 67 Решение: 4. Рассмотрим прямоугольный треугольник с углом А. Тогда угол при высоте равен 180˚-(90˚+45˚)=45˚ 5. Угол НК=45˚-34˚=11 ˚.

№ слайда 8  Спасибо за внимание!
Описание слайда:

Спасибо за внимание!

Общая информация

Номер материала: ДВ-228649

Похожие материалы

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»