Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация по математике "квадратные уравнения" (10 класс)

Презентация по математике "квадратные уравнения" (10 класс)

Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

К ОПЛАТЕ ЗА ОДНОГО УЧЕНИКА: ВСЕГО 28 РУБ.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика

Документы в архиве:

Название документа KvUrav.ppt

Алгебра 8 класс.
Необходимость решать уравнения  не только первой, но и второй степени ёщё в...
  Правило решения этих уравнений, изложенное в вавилонских текстах, совпадае...
 Франсуа Виет
Теорема Виета. Если приведенное квадратное уравнение x2+px+q=0 имеет действит...
Х2 – 14Х + 24 = 0 D=b2 – 4ac = 196 – 96 = 100 X1 = 2, X2 = 12 X1 + X2 = 14, X...
Х2 + 3Х – 10 = 0 Х1·Х2 = – 10, значит корни имеют разные знаки Х1 + Х2 = – 3,...
Реши устно уравнения: 	х2 – 7х + 12 = 0 х = 3, х = 4	х2 + 18х + 32 = 0 х = -...
Определение квадратного уравнения. Квадратным уравнением называется уравнение...
Решение примера.
Например решаю квадратное уравнение. 3Х2 –18Х+24=0 D1=К2-ас=92-3•24=72=9>0 Х1...
1 из 11

Описание презентации по отдельным слайдам:

№ слайда 1 Алгебра 8 класс.
Описание слайда:

Алгебра 8 класс.

№ слайда 2 Необходимость решать уравнения  не только первой, но и второй степени ёщё в
Описание слайда:

Необходимость решать уравнения  не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей веры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их  клинописных текстах  встречаются, кроме неполных, и такие, например, полные квадратные уравнения.   Квадратные уравнения в Древнем Вавилоне.

№ слайда 3   Правило решения этих уравнений, изложенное в вавилонских текстах, совпадае
Описание слайда:

  Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводя только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилонии, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

№ слайда 4  Франсуа Виет
Описание слайда:

Франсуа Виет

№ слайда 5 Теорема Виета. Если приведенное квадратное уравнение x2+px+q=0 имеет действит
Описание слайда:

Теорема Виета. Если приведенное квадратное уравнение x2+px+q=0 имеет действительные корни, то их сумма равна -p, а произведение равно q, то есть x1 + x2 = -p , x1 x2 = q (сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену).

№ слайда 6 Х2 – 14Х + 24 = 0 D=b2 – 4ac = 196 – 96 = 100 X1 = 2, X2 = 12 X1 + X2 = 14, X
Описание слайда:

Х2 – 14Х + 24 = 0 D=b2 – 4ac = 196 – 96 = 100 X1 = 2, X2 = 12 X1 + X2 = 14, X1•X2 = 24 Не верите? Проверьте!

№ слайда 7 Х2 + 3Х – 10 = 0 Х1·Х2 = – 10, значит корни имеют разные знаки Х1 + Х2 = – 3,
Описание слайда:

Х2 + 3Х – 10 = 0 Х1·Х2 = – 10, значит корни имеют разные знаки Х1 + Х2 = – 3, значит больший по модулю корень - отрицательный Подбором находим корни: Х1 = – 5, Х2 = 2 Угадываем корни

№ слайда 8 Реши устно уравнения: 	х2 – 7х + 12 = 0 х = 3, х = 4	х2 + 18х + 32 = 0 х = -
Описание слайда:

Реши устно уравнения: х2 – 7х + 12 = 0 х = 3, х = 4 х2 + 18х + 32 = 0 х = - 16, х = -2 х2 – 5х – 14 = 0 х = -2, х = 7 х2 + 5х + 6 = 0 х = -3, х = -2 х2 – 8х + 12 = 0 х = 2, х = 6 х2 + 5х + 4 = 0 х = -4, х = -1 х2 – 5х – 6 = 0 х = -1, х = 6

№ слайда 9 Определение квадратного уравнения. Квадратным уравнением называется уравнение
Описание слайда:

Определение квадратного уравнения. Квадратным уравнением называется уравнение вида ax2+bx+c=0, где x - переменная, a, b, c - некоторые числа, причем a≠0. . Алгоритм решения квадратного уравнения: если D>0, то данное квадратное уравнение имеет два корня,которые равны

№ слайда 10 Решение примера.
Описание слайда:

Решение примера.

№ слайда 11 Например решаю квадратное уравнение. 3Х2 –18Х+24=0 D1=К2-ас=92-3•24=72=9>0 Х1
Описание слайда:

Например решаю квадратное уравнение. 3Х2 –18Х+24=0 D1=К2-ас=92-3•24=72=9>0 Х1= Х2=

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy



Автор
Дата добавления 30.12.2015
Раздел Математика
Подраздел Презентации
Просмотров176
Номер материала ДВ-299359
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх