Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация по математике на тему "Математика в искусстве" (9 класс)

Презентация по математике на тему "Математика в искусстве" (9 класс)

В ПОМОЩЬ УЧИТЕЛЮ ОТ ПРОЕКТА "ИНФОУРОК":
СКАЧАТЬ ВСЕ ВИДЕОУРОКИ СО СКИДКОЙ 86%

Видеоуроки от проекта "Инфоурок" за Вас изложат любую тему Вашим ученикам, избавив от необходимости искать оптимальные пути для объяснения новых тем или закрепления пройденных. Видеоуроки озвучены профессиональным мужским голосом. При этом во всех видеоуроках используется принцип "без учителя в кадре", поэтому видеоуроки не будут ассоциироваться у учеников с другим учителем, и благодарить за качественную и понятную подачу нового материала они будут только Вас!

МАТЕМАТИКА — 603 видео
НАЧАЛЬНАЯ ШКОЛА — 577 видео
ОБЖ И КЛ. РУКОВОДСТВО — 172 видео
ИНФОРМАТИКА — 201 видео
РУССКИЙ ЯЗЫК И ЛИТ. — 456 видео
ФИЗИКА — 259 видео
ИСТОРИЯ — 434 видео
ХИМИЯ — 164 видео
БИОЛОГИЯ — 305 видео
ГЕОГРАФИЯ — 242 видео

Десятки тысяч учителей уже успели воспользоваться видеоуроками проекта "Инфоурок". Мы делаем все возможное, чтобы выпускать действительно лучшие видеоуроки по общеобразовательным предметам для учителей. Традиционно наши видеоуроки ценят за качество, уникальность и полезность для учителей.

Сразу все видеоуроки по Вашему предмету - СКАЧАТЬ

  • Математика
Проектная работа по математике Тема : «МАТЕМАТИКА В ИСКУССТВЕ» 					Авторы:...
Человек различает окружающие его предметы по форме. Интерес к форме какого-ли...
открытие у художников того времени получило название"золотое сечение" картины...
Золотое сечение – гармоническая пропорция В математике пропорцией (лат. propo...
С историей золотого сечения косвенным образом связано имя итальянского матема...
Скульптурные сооружения, памятники воздвигаются, чтобы увековечить знаменател...
В книгах о “золотом сечении” можно найти замечание о том, что в архитектуре,...
Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении зол...
Портрет Моны Лизы привлекает тем, что композиция рисунка построена на"золоты...
1 из 11

Описание презентации по отдельным слайдам:

№ слайда 1 Проектная работа по математике Тема : «МАТЕМАТИКА В ИСКУССТВЕ» 					Авторы:
Описание слайда:

Проектная работа по математике Тема : «МАТЕМАТИКА В ИСКУССТВЕ» Авторы: Ученики 9 класса МБОУ СОШ Нижнетамбовского с.п Учитель: Денискина Н.С.

№ слайда 2 Человек различает окружающие его предметы по форме. Интерес к форме какого-ли
Описание слайда:

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе. Еще в эпоху Возрождения художники открыли, что любая картина имеет определенные точки, невольно приковывающие наше внимание, так называемые зрительные центры. При этом абсолютно неважно, какой формат имеет картина - горизонтальный или вертикальный. Таких точек всего четыре, и расположены они на расстоянии 3/8 и 5/8 от соответствующих краев плоскости.

№ слайда 3 открытие у художников того времени получило название"золотое сечение" картины
Описание слайда:

открытие у художников того времени получило название"золотое сечение" картины. Поэтому, для того чтобы привлечь внимание к главному элементу фотографии, необходимо совместить этот элемент с одним из зрительных центров.

№ слайда 4 Золотое сечение – гармоническая пропорция В математике пропорцией (лат. propo
Описание слайда:

Золотое сечение – гармоническая пропорция В математике пропорцией (лат. proportio) называют равенство двух отношений: a : b= c : d. Отрезок прямой АВ можно разделить на две части следующими способами: - на две равные части – АВ : АС= АВ : ВС; - на две неравные части в любом отношении (такие части пропорции не образуют); таким образом, когда АВ : АС= АС : ВС. Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении. Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a : b= b : c или с : b= b : а.

№ слайда 5
Описание слайда:

№ слайда 6
Описание слайда:

№ слайда 7 С историей золотого сечения косвенным образом связано имя итальянского матема
Описание слайда:

С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд “Книга об абаке” (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила “Сколько пар кроликов в один год от одной пары родится”. Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, и т.д. Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3= 5; 3 + 5= 8; 5 + 8= 13, 8 + 13= 21; 13 + 21= 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34= 0,617, а 34 : 55= 0,618. Это отношение обозначается символом Ф. Только это отношение – 0,618 : 0,382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему. Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар? Фибоначчи доказывает, что оптимальной является такая система гирь: 1, 2, 4, 8, 16...

№ слайда 8 Скульптурные сооружения, памятники воздвигаются, чтобы увековечить знаменател
Описание слайда:

Скульптурные сооружения, памятники воздвигаются, чтобы увековечить знаменательные события, сохранить в памяти потомков имена прославленных людей, их подвиги и деяния. Известно, что еще в древности основу скульптуры составляла теория пропорций. Отношения частей человеческого тела связывались с формулой золотого сечения.Пропорции “золотого сечения” создают впечатление гармонии красоты, поэтому скульпторы использовали их в своих произведениях.Скульпторы утверждают, что талия делит совершенное человеческое тело в отношении “золотого сечения”. Так, например, знаменитая статуя Аполлона Бельведерского состоит из частей, делящихся по золотым отношениям.Великий древнегреческий скульптор Фидий часто использовал “золотое сечение” в своих произведениях. Самыми знаменитыми из них были статуя Зевса Олимпийского (которая считалась одним из чудес света) и Афины Парфенос.

№ слайда 9 В книгах о “золотом сечении” можно найти замечание о том, что в архитектуре,
Описание слайда:

В книгах о “золотом сечении” можно найти замечание о том, что в архитектуре, как и в живописи, все зависит от положения наблюдателя, и что, если некоторые пропорции в здании с одной стороны кажутся образующими “золотое сечение”, то с других точек зрения они будут выглядеть иначе. “Золотое сечение” дает наиболее спокойное соотношение размеров тех или иных длин. Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.). Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. выступы сделаны целиком из квадратов пентилейского мрамора. Благородство материала, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон (синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по “золотому сечению”, то получим те или иные выступы фасада.

№ слайда 10 Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении зол
Описание слайда:

Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении золотого сечения, придает ей характер уравновешенности и спокойствия, в соответствии с замыслом художника. Когда же замысел художника иной, если, скажем, он создает картину с бурно развивающимся действием, подобная геометрическая схема композиции (с преобладанием вертикалей и горизонталей) становится неприемлемой

№ слайда 11 Портрет Моны Лизы привлекает тем, что композиция рисунка построена на"золоты
Описание слайда:

Портрет Моны Лизы привлекает тем, что композиция рисунка построена на"золотых треугольниках" (точнее на треугольниках, являющихся кусками правильного звездчатого пятиугольника

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

Автор
Дата добавления 30.10.2015
Раздел Математика
Подраздел Презентации
Просмотров148
Номер материала ДВ-108933
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх