Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация по математике на тему "Понятие комбинаторики. Перестановки"

Презентация по математике на тему "Понятие комбинаторики. Перестановки"

  • Математика

Документы в архиве:

Название документа Понятие комбинаторики. Перестановки.pptx

Главное в этом мире не то, где мы стоим, а то в каком направлении движемся. (...
 Тема урока: «Понятие комбинаторики. Перестановки»
Цели урока: 1.Ввести и определить основные понятия; 2.установить закономерно...
Как всё начиналось… Первоначально комбинаторика возникла в XVI в. в связи с р...
Вопросы внеаудиторной самостоятельной работы студентов 1. Определения комбина...
КОМБИНАТОРИКА - это раздел математики, в котором изучаются простейшие «соедин...
Термин «комбинаторика» был введён в математический обиход Лейбницем, который...
Определение: Комбинаторикой называется область математики, в которой изучаютс...
Этапы развития науки ЭТАПЫ ЛИЧНОСТЬ РАБОТЫ
1 этап. Предыстория теории вероятности (до16века) Джероламо Кардано написал «...
Основы комбинаторики и теории вероятностей создали и разработали французские...
Ученик Лейбница Якоб Бернулли, один из основателей теории вероятностей, излож...
4 этап. 19-20 вв. Петербургская школа Возникает статистическая физика, котора...
5 этап. Современный этап развития теории вероятностей. в 30-е годы XX века пр...
Этапы развития науки Сравним таблицу: ЭТАПЫ ЛИЧНОСТЬ РАБОТЫ 1-этап  Джероламо...
использование вероятностных методов учебные заведения (составление расписаний...
Задача комбинаторики заключается в размещении объектов по специальным правила...
Задание: Составить все размещения из трех букв А, Б, В. 1-способ: перебора; 2...
 Видео
определение: перестановками из n элементов называются размещения из n элемент...
Задача Квартет Проказница Мартышка Осёл, Козёл, Да косолапый Мишка Затеяли иг...
Решение: Здесь n=4, поэтому способов «усесться чинно в ряд» имеется P = 4! =...
Пример 3. «Приберёмся» на книжной полке: У нас есть семитомник Пушкина. Сколь...
Пример 3. «Приберёмся» на книжной полке: У нас есть семитомник Пушкина. Сколь...
Пиковая дама". А.С.Пушкин Сколькими способами может выпасть комбинация карт...
Правило суммы: если объект А можно выбрать n способами, а объект В - k спосо...
Задача В семитомнике Пушкина: 3 тома стихи и 4- проза. Сколькими способами мо...
практическая работа по обработке статистических данных
Задача о бесплатном обеде.
 3 628 800 дней почти 10 000 лет
Видео
Домашнее задание:  1.Решить задачу: Пять человек обменялись друг с другом фот...
Рефлексия 1.Комбинаторика изучает: а)деятельность комбинатов бытового обслужи...
 Спасибо за урок!
1 из 35

Описание презентации по отдельным слайдам:

№ слайда 1 Главное в этом мире не то, где мы стоим, а то в каком направлении движемся. (
Описание слайда:

Главное в этом мире не то, где мы стоим, а то в каком направлении движемся. (Оливер Холмс)

№ слайда 2  Тема урока: «Понятие комбинаторики. Перестановки»
Описание слайда:

Тема урока: «Понятие комбинаторики. Перестановки»

№ слайда 3 Цели урока: 1.Ввести и определить основные понятия; 2.установить закономерно
Описание слайда:

Цели урока: 1.Ввести и определить основные понятия; 2.установить закономерности; 3.научиться применять изученный материал на практике.

№ слайда 4 Как всё начиналось… Первоначально комбинаторика возникла в XVI в. в связи с р
Описание слайда:

Как всё начиналось… Первоначально комбинаторика возникла в XVI в. в связи с распространением различных азартных игр.

№ слайда 5 Вопросы внеаудиторной самостоятельной работы студентов 1. Определения комбина
Описание слайда:

Вопросы внеаудиторной самостоятельной работы студентов 1. Определения комбинаторики. 2. Этапы развития науки. 3. Применение комбинаторики в современной жизни.

№ слайда 6 КОМБИНАТОРИКА - это раздел математики, в котором изучаются простейшие «соедин
Описание слайда:

КОМБИНАТОРИКА - это раздел математики, в котором изучаются простейшие «соединения»: перестановки, размещения, сочетания. (Большой Энциклопедический Словарь) - происходит от латинского слова «combinare», что в переводе на русский означает – «сочетать», «соединять».

№ слайда 7 Термин «комбинаторика» был введён в математический обиход Лейбницем, который
Описание слайда:

Термин «комбинаторика» был введён в математический обиход Лейбницем, который в 1666 году опубликовал свой труд «Рассуждения о комбинаторном искусстве». известный немецкий учёный Готфрид Вильгельм Лейбниц. (1.07.1646 - 14.11.1716)

№ слайда 8 Определение: Комбинаторикой называется область математики, в которой изучаютс
Описание слайда:

Определение: Комбинаторикой называется область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству.

№ слайда 9 Этапы развития науки ЭТАПЫ ЛИЧНОСТЬ РАБОТЫ
Описание слайда:

Этапы развития науки ЭТАПЫ ЛИЧНОСТЬ РАБОТЫ

№ слайда 10 1 этап. Предыстория теории вероятности (до16века) Джероламо Кардано написал «
Описание слайда:

1 этап. Предыстория теории вероятности (до16века) Джероламо Кардано написал «Математическое исследование игры в кости», опубликованное посмертно. Теорией этой игры занимались также Тарталья и Галилей. Джероламо Кардано, математик, инженер (1501-1576) Никколо Тарталья, итальянский математик (1499-1557) Галилео Галилей, физик, математик (1564-1642)

№ слайда 11 Основы комбинаторики и теории вероятностей создали и разработали французские
Описание слайда:

Основы комбинаторики и теории вероятностей создали и разработали французские математики XVII века Пьер Ферма и Блез Паскаль. Пьер Ферма (1601-1665) Блез Паскаль (1623-1662) 2 этап. Возникновение теории вероятности как науки

№ слайда 12 Ученик Лейбница Якоб Бернулли, один из основателей теории вероятностей, излож
Описание слайда:

Ученик Лейбница Якоб Бернулли, один из основателей теории вероятностей, изложил в своей книге «Искусство предположений» (1713) множество сведений по комбинаторике. Якоб Бернулли, математик (1654-1705) В этот же период формируется терминология новой науки. Термин «сочетание» впервые встречается у Паскаля. Термин «перестановка» употребил в указанной книге Якоб Бернулли. Бернулли использовал и термин «размещение». 3 этап. 17-19 века

№ слайда 13 4 этап. 19-20 вв. Петербургская школа Возникает статистическая физика, котора
Описание слайда:

4 этап. 19-20 вв. Петербургская школа Возникает статистическая физика, которая развивается в тесной связи с теорией вероятностей. Пафнутий Львович Чебышев (1821-1894) Александр Михайлович Ляпунов Марков  Андрей Андреевич

№ слайда 14 5 этап. Современный этап развития теории вероятностей. в 30-е годы XX века пр
Описание слайда:

5 этап. Современный этап развития теории вероятностей. в 30-е годы XX века произошло окончательное установление аксиоматики. Это связано с именами Бернштейна и советского математика, одного из крупнейших математиков ХХ века Андре́я Никола́евича Колмого́рова Андрей Никола́евич Колмогоров создатель современной теории вероятностей, автор классических результатов в теории функций, в математической логике, топологии, теории дифференциальных уравнений, функциональном анализе, в теории турбулентности, теории гамильтоновых систем.

№ слайда 15 Этапы развития науки Сравним таблицу: ЭТАПЫ ЛИЧНОСТЬ РАБОТЫ 1-этап  Джероламо
Описание слайда:

Этапы развития науки Сравним таблицу: ЭТАПЫ ЛИЧНОСТЬ РАБОТЫ 1-этап  ДжероламоКардано,Тарталья и Галилей Теория игры в кости 2-этап Пьер Ферма и Блез Паскаль. Основы комбинаторики и теории вероятностей 3-этап ЯкобБернулли, «Искусство предположений» 4-этап Пафнутий, Ляпунов, Марков Возникает статистическая физика 5-этап АндрейНикола́евичКолмогоров установление аксиоматики

№ слайда 16 использование вероятностных методов учебные заведения (составление расписаний
Описание слайда:

использование вероятностных методов учебные заведения (составление расписаний); сфера общественного питания (составление меню); спортивные соревнования (расчёт количества игр между участниками); производство (распределение нескольких видов работ между рабочими); агротехника (размещение посевов на нескольких полях); химия (анализ возможных связей между химическими элементами); биология (расшифровка кода ДНК); астрология (анализ расположения планет и созвездий); криптография (разработка методов шифрования); И многое другое

№ слайда 17
Описание слайда:

№ слайда 18 Задача комбинаторики заключается в размещении объектов по специальным правила
Описание слайда:

Задача комбинаторики заключается в размещении объектов по специальным правилам и нахождение числа способов таких размещений.

№ слайда 19 Задание: Составить все размещения из трех букв А, Б, В. 1-способ: перебора; 2
Описание слайда:

Задание: Составить все размещения из трех букв А, Б, В. 1-способ: перебора; 2- способ: дерево возможных вариантов; 3 способ: по формуле.

№ слайда 20  Видео
Описание слайда:

Видео

№ слайда 21 определение: перестановками из n элементов называются размещения из n элемент
Описание слайда:

определение: перестановками из n элементов называются размещения из n элементов по n. Число перестановок из n элементов обозначается Рn. Получим формулу для вычисления числа перестановок из n элементов: Рn= n!

№ слайда 22 Задача Квартет Проказница Мартышка Осёл, Козёл, Да косолапый Мишка Затеяли иг
Описание слайда:

Задача Квартет Проказница Мартышка Осёл, Козёл, Да косолапый Мишка Затеяли играть квартет … Стой, братцы стой! – Кричит Мартышка, - погодите! Как музыке идти? Ведь вы не так сидите… И так, и этак пересаживались – опять музыка на лад не идет. Вот пуще прежнего пошли у них разборы И споры, Кому и как сидеть… Сколькими способами можно рассадить четырех музыкантов?

№ слайда 23 Решение: Здесь n=4, поэтому способов «усесться чинно в ряд» имеется P = 4! =
Описание слайда:

Решение: Здесь n=4, поэтому способов «усесться чинно в ряд» имеется P = 4! = 1 * 2 * 3 * 4 = 24

№ слайда 24 Пример 3. «Приберёмся» на книжной полке: У нас есть семитомник Пушкина. Сколь
Описание слайда:

Пример 3. «Приберёмся» на книжной полке: У нас есть семитомник Пушкина. Сколькими способами вы можете расставить книги на полке?

№ слайда 25 Пример 3. «Приберёмся» на книжной полке: У нас есть семитомник Пушкина. Сколь
Описание слайда:

Пример 3. «Приберёмся» на книжной полке: У нас есть семитомник Пушкина. Сколькими способами вы можете расставить книги на полке? Ответ: Р7 = 7!, где 7! = 1 * 2 * 3 * 4 * 5 * 6 * 7 =5040

№ слайда 26 Пиковая дама". А.С.Пушкин Сколькими способами может выпасть комбинация карт
Описание слайда:

Пиковая дама". А.С.Пушкин Сколькими способами может выпасть комбинация карт «тройка, семерка, туз»?

№ слайда 27 Правило суммы: если объект А можно выбрать n способами, а объект В - k спосо
Описание слайда:

Правило суммы: если объект А можно выбрать n способами, а объект В - k способами, то объект "А или В" можно выбрать n+k способами. Пример: Если на одной книжной полке шкафа стоит 30 различных книг, а на другой – 40 различных книг, то выбрать одну книгу из стоящих на полках книг можно 30 + 40 = 70 способами.   Правило произведения: если объект А можно выбрать n способами, а объект В независимо от него - k способами, то пару объектов "А и В" можно выбрать n·k способами. Вновь посмотрим на книжную полку. В семитомнике Пушкина: 3 тома стихи и 4- проза. Сколькими способами можно расставить тома, что - бы стихи всегда находились вместе?

№ слайда 28 Задача В семитомнике Пушкина: 3 тома стихи и 4- проза. Сколькими способами мо
Описание слайда:

Задача В семитомнике Пушкина: 3 тома стихи и 4- проза. Сколькими способами можно расставить тома, чтобы тома со стихами всегда находились вместе.

№ слайда 29 практическая работа по обработке статистических данных
Описание слайда:

практическая работа по обработке статистических данных

№ слайда 30 Задача о бесплатном обеде.
Описание слайда:

Задача о бесплатном обеде.

№ слайда 31  3 628 800 дней почти 10 000 лет
Описание слайда:

3 628 800 дней почти 10 000 лет

№ слайда 32 Видео
Описание слайда:

Видео

№ слайда 33 Домашнее задание:  1.Решить задачу: Пять человек обменялись друг с другом фот
Описание слайда:

Домашнее задание:  1.Решить задачу: Пять человек обменялись друг с другом фотографиями. Сколько всего фотографий было. (комбинация 1-2 и 2-1 – разные) 2. Расспросить родителей о их работе и составить задачи по теме «Комбинаторные задачи в жизни моих родителей».

№ слайда 34 Рефлексия 1.Комбинаторика изучает: а)деятельность комбинатов бытового обслужи
Описание слайда:

Рефлексия 1.Комбинаторика изучает: а)деятельность комбинатов бытового обслуживания; б)способы пошива комбинезонов; в)способы решения задач на различные комбинации объектов. 2.5!- а)это сумма чисел от 1 до 5; б)квадрат числа 5; в)произведение натуральных чисел от 1 до 5. 3.Количество способов занять очередь на экзамен по математике 15 учащимися определяется: а)перестановкой; б)переэкзаменовкой; в)экзаменационной комиссией. 4.Комбинаторные задачи встречаются в профессиональной деятельности: а)парикмахера – визажиста; б)диспетчера автовокзала; в)повара; добавьте свой пример.

№ слайда 35  Спасибо за урок!
Описание слайда:

Спасибо за урок!

Автор
Дата добавления 16.02.2016
Раздел Математика
Подраздел Презентации
Просмотров155
Номер материала ДВ-458397
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх