Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация по математике на тему "Степенная функция. Производная и первообразная степенной функции (11 класс)

Презентация по математике на тему "Степенная функция. Производная и первообразная степенной функции (11 класс)

  • Математика
Если а > 0, то степенная функция определена и при х = 0, поскольку 0а=0. При...
11 «А» .
(хα )` = α xα -10 имеем (хα)' =αхα-1>0, поэтому степенная функция возрастает...
Показатель n– четное натуральное число 1 0 х у у = х2, у = х4 , у = х6, у = х...
Показатель n– нечетное натуральное число 1 х у у = х3, у = х5, у = х7, у = х9...
Показатель n –отрицательное четное натуральное число 1 0 х у у = х-2, у = х-4...
Показатель n – отрицательное нечетное натуральное число 1 0 х у у = х-3, у =...
0 Показатель n– положительное действительное нецелое число 1 х у у = х1,3, у...
0 Показатель n – отрицательное действительное нецелое число 1 х у у = х-1,3,...
Работа в группах
Самостоятельная работа
Правильный ответ
Исаак Ньютон (1643- 1727) Никитина Ксения английский физик и математик; один...
    Производная степенной функции.
   
ПРИМЕРЫ: 1. (X6)=6X 6-1=6X5 2. (x-6) = -6x -6-1=-6x-7=-6 x7 3. (X 1/2 ) = 1 2 x
  Применение производной степенной функции.
  
   
 
Формулы первообразной степенной функции Костя Ли
 Пример, при котором
 Пример,при котором
Вычисление значений степенной функции Ким Никита
Пример
Степенная функция. Вычисление значений степенной функции. Блинов Евгений
Домашнее задание Прочитать п.9, конспект. № 560(а,б), 565(а,б). Дополнительно...
Рефлексия Какую задачу ставили на уроке? Удалось ли решить поставленную задач...
Спасибо за внимание!
1 из 32

Описание презентации по отдельным слайдам:

№ слайда 1
Описание слайда:

№ слайда 2 Если а > 0, то степенная функция определена и при х = 0, поскольку 0а=0. При
Описание слайда:

Если а > 0, то степенная функция определена и при х = 0, поскольку 0а=0. При целых а формулой f(х) = ха степенная функция f определена для х<0 .

№ слайда 3 11 «А» .
Описание слайда:

11 «А» .

№ слайда 4 (хα )` = α xα -10 имеем (хα)&#039; =αхα-1&gt;0, поэтому степенная функция возрастает
Описание слайда:

(хα )` = α xα -1<0 При α>0 имеем (хα)' =αхα-1>0, поэтому степенная функция возрастает при x>0 При х=0 степенная функция равна 0 и хα→0 при х→0 и x>0 Мирошниченко Мария Степенная функция, ее свойства и график  

№ слайда 5 Показатель n– четное натуральное число 1 0 х у у = х2, у = х4 , у = х6, у = х
Описание слайда:

Показатель n– четное натуральное число 1 0 х у у = х2, у = х4 , у = х6, у = х8, … у = х2 Функция у=х2n четная, т.к. (–х)2n = х2n График: парабола Функция убывает на промежутке Функция возрастает на промежутке

№ слайда 6 Показатель n– нечетное натуральное число 1 х у у = х3, у = х5, у = х7, у = х9
Описание слайда:

Показатель n– нечетное натуральное число 1 х у у = х3, у = х5, у = х7, у = х9, … у = х3 Функция у=х2n-1 нечетная, т.к. (–х)2n-1 = – х2n-1 0 График: кубическая парабола Функция возрастает на промежутке

№ слайда 7 Показатель n –отрицательное четное натуральное число 1 0 х у у = х-2, у = х-4
Описание слайда:

Показатель n –отрицательное четное натуральное число 1 0 х у у = х-2, у = х-4 , у = х-6, у = х-8, … Функция у=х2n четная, т.к. (–х)-2n = х-2n График: гипербола Функция возрастает на промежутке Функция убывает на промежутке

№ слайда 8 Показатель n – отрицательное нечетное натуральное число 1 0 х у у = х-3, у =
Описание слайда:

Показатель n – отрицательное нечетное натуральное число 1 0 х у у = х-3, у = х-5 , у = х-7, у = х-9, … Функция у=х-(2n-1) нечетная, т.к. (–х)–(2n-1) = –х–(2n-1) График: гипербола Функция убывает на промежутке Функция убывает на промежутке

№ слайда 9 0 Показатель n– положительное действительное нецелое число 1 х у у = х1,3, у
Описание слайда:

0 Показатель n– положительное действительное нецелое число 1 х у у = х1,3, у = х0,7, у = х2,12, … Функция возрастает на промежутке

№ слайда 10 0 Показатель n – отрицательное действительное нецелое число 1 х у у = х-1,3,
Описание слайда:

0 Показатель n – отрицательное действительное нецелое число 1 х у у = х-1,3, у = х-0,7, у = х-2,12, … Функция убывает на промежутке

№ слайда 11
Описание слайда:

№ слайда 12 Работа в группах
Описание слайда:

Работа в группах

№ слайда 13 Самостоятельная работа
Описание слайда:

Самостоятельная работа

№ слайда 14 Правильный ответ
Описание слайда:

Правильный ответ

№ слайда 15 Исаак Ньютон (1643- 1727) Никитина Ксения английский физик и математик; один
Описание слайда:

Исаак Ньютон (1643- 1727) Никитина Ксения английский физик и математик; один из создателей дифференциального и интегрального исчислений. «Когда величина является максимальной или минимальной, в этот момент она не течет ни вперед, ни назад».

№ слайда 16     Производная степенной функции.
Описание слайда:

    Производная степенной функции.

№ слайда 17    
Описание слайда:

   

№ слайда 18 ПРИМЕРЫ: 1. (X6)=6X 6-1=6X5 2. (x-6) = -6x -6-1=-6x-7=-6 x7 3. (X 1/2 ) = 1 2 x
Описание слайда:

ПРИМЕРЫ: 1. (X6)=6X 6-1=6X5 2. (x-6) = -6x -6-1=-6x-7=-6 x7 3. (X 1/2 ) = 1 2 x

№ слайда 19   Применение производной степенной функции.
Описание слайда:

  Применение производной степенной функции.

№ слайда 20   
Описание слайда:

 

№ слайда 21    
Описание слайда:

   

№ слайда 22  
Описание слайда:

 

№ слайда 23 Формулы первообразной степенной функции Костя Ли
Описание слайда:

Формулы первообразной степенной функции Костя Ли

№ слайда 24  Пример, при котором
Описание слайда:

Пример, при котором

№ слайда 25
Описание слайда:

№ слайда 26  Пример,при котором
Описание слайда:

Пример,при котором

№ слайда 27 Вычисление значений степенной функции Ким Никита
Описание слайда:

Вычисление значений степенной функции Ким Никита

№ слайда 28 Пример
Описание слайда:

Пример

№ слайда 29 Степенная функция. Вычисление значений степенной функции. Блинов Евгений
Описание слайда:

Степенная функция. Вычисление значений степенной функции. Блинов Евгений

№ слайда 30 Домашнее задание Прочитать п.9, конспект. № 560(а,б), 565(а,б). Дополнительно
Описание слайда:

Домашнее задание Прочитать п.9, конспект. № 560(а,б), 565(а,б). Дополнительно: № 564 (б,г).  

№ слайда 31 Рефлексия Какую задачу ставили на уроке? Удалось ли решить поставленную задач
Описание слайда:

Рефлексия Какую задачу ставили на уроке? Удалось ли решить поставленную задачу? Каким способом? Какие получили результаты? Что нужно ещё сделать? Где можно применить полученные знания? Что на уроке у вас хорошо получилось?...

№ слайда 32 Спасибо за внимание!
Описание слайда:

Спасибо за внимание!

Автор
Дата добавления 29.07.2016
Раздел Математика
Подраздел Презентации
Просмотров100
Номер материала ДБ-148544
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх