Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Презентации / Презентация по математике на тему "Золотое сечение"(6 класс)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Презентация по математике на тему "Золотое сечение"(6 класс)

библиотека
материалов
Золотое Сечение Учитель математики Стогова Н.Л.
Золотое Сечение Человек различает окружающие его предметы по форме. Интерес к...
Золотое сечение – гармоническая пропорция В математике пропорцией (лат. propo...
Построение Золотого сечения 1.Из точки В восстанавливается перпендикуляр, рав...
Золотое Сечение можно наблюдать в: 1.Геометрии 2.Живописи 3.Скульптуре 4.Архи...
Конец
В Геометрии Пятиконечная звезда, получаемая при последовательном соединении ч...
Если от "золотого прямоугольника" отрезать квадрат, то опять получится "золот...
В Живописи Еще в эпоху Возрождения художники открыли, что любая картина имеет...
На картине И.И. Шишкина "Сосновая роща" просматриваются мотивы золотого сечен...
Ощущение динамики, волнения проявляется, пожалуй, сильней всего в другой прос...
Переходя к примерам “золотого сечения” в живописи, нельзя не остановить своег...
В Скульптуре – Скульптурные сооружения, памятники воздвигаются, чтобы увекове...
В Архитектуре – Одним из красивейших произведений древнегреческой архитектуры...
Еще один архитектурный шедевр Москвы – дом Пашкова – является одним из наибол...
Одним из красивейших произведений древнегреческой архитектуры является Парфен...
На плане пола Парфенона также можно заметить "золотые прямоугольники":
В Живой Природе Приглядимся внимательно к побегу цикория. От основного стебля...
Скульпторы утверждают, что талия делит совершенное человеческое тело в отноше...
21 1

Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Описание презентации по отдельным слайдам:

№ слайда 1 Золотое Сечение Учитель математики Стогова Н.Л.
Описание слайда:

Золотое Сечение Учитель математики Стогова Н.Л.

№ слайда 2 Золотое Сечение Человек различает окружающие его предметы по форме. Интерес к
Описание слайда:

Золотое Сечение Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

№ слайда 3 Золотое сечение – гармоническая пропорция В математике пропорцией (лат. propo
Описание слайда:

Золотое сечение – гармоническая пропорция В математике пропорцией (лат. proportio) называют равенство двух отношений: a : b = c : d Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a : b = b : c или с : b = b : а. Отношение большей части отрезка к меньшей и всей длины отрезка к большей его части (Ф) равно приблизительно 1,618... Обратная величина - отношение меньшей части отрезка к большей и большей части к всему отрезку - составляет примерно 0,618...

№ слайда 4 Построение Золотого сечения 1.Из точки В восстанавливается перпендикуляр, рав
Описание слайда:

Построение Золотого сечения 1.Из точки В восстанавливается перпендикуляр, равный половине АВ. 2.Полученная точка С соединяется линией с точкой А. 3.На полученной прямой от точки С откладывается отрезок CD, равный ВС. 4.На прямой AB откладывается отрезок AE=AD. 5.Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции. A B E D C

№ слайда 5 Золотое Сечение можно наблюдать в: 1.Геометрии 2.Живописи 3.Скульптуре 4.Архи
Описание слайда:

Золотое Сечение можно наблюдать в: 1.Геометрии 2.Живописи 3.Скульптуре 4.Архитектуре 5.Живой природе

№ слайда 6 Конец
Описание слайда:

Конец

№ слайда 7 В Геометрии Пятиконечная звезда, получаемая при последовательном соединении ч
Описание слайда:

В Геометрии Пятиконечная звезда, получаемая при последовательном соединении через одну всех вершин правильного пятиугольника (пентаграмма), всегда привлекала внимание людей совершенством формы. Пифагорейцы именно ее выбрали символом своего союза. В этой фигуре наблюдается удивительное постоянство отношений составляющих ее отрезков. На рисунке AD:AC = AC:CD = AB:BC = AD:AE = AE:EC. Пользуясь симметрией звезды, этот ряд равенств можно продолжить. Все эти отношения равны числу Ф (1,618...).

№ слайда 8 Если от "золотого прямоугольника" отрезать квадрат, то опять получится "золот
Описание слайда:

Если от "золотого прямоугольника" отрезать квадрат, то опять получится "золотой прямоугольник"; так можно продолжать до бесконечности. На рисунке видно, что если провести диагонали первого и второго прямоугольников, то их точка пересечения О будет принадлежать всем получаемым "золотым прямоугольникам Графическое приближение "золотой спирали" можно построить, соединив дугами точки квадратов, отсеченных от золотого прямоугольника при построении новых золотых прямоугольников.

№ слайда 9 В Живописи Еще в эпоху Возрождения художники открыли, что любая картина имеет
Описание слайда:

В Живописи Еще в эпоху Возрождения художники открыли, что любая картина имеет определенные точки, невольно приковывающие наше внимание, так называемые зрительные центры. При этом абсолютно неважно, какой формат имеет картина - горизонтальный или вертикальный. Таких точек всего четыре, они делят величину изображения по горизонтали и вертикали в золотом сечении, т.е. расположены они на расстоянии примерно 3/8 и 5/8 от соответствующих краев плоскости. Данное открытие у художников того времени получило название "золотое сечение" картины. Поэтому, для того чтобы привлечь внимание к главному элементу фотографии, необходимо совместить этот элемент с одним из зрительных центров.

№ слайда 10 На картине И.И. Шишкина "Сосновая роща" просматриваются мотивы золотого сечен
Описание слайда:

На картине И.И. Шишкина "Сосновая роща" просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины приблизительно в золотом сечении. Справа от сосны - освещенный солнцем пригорок. Он делит в золотом сечении правую часть картины по горизонтали. Слева от главной сосны находится множество сосен - при желании можно с успехом продолжить деление картины в пропорциях золотого сечения. Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении золотого сечения, придает ей характер уравновешенности и спокойствия, в соответствии с замыслом художника. Когда художник создает картину с бурно развивающимся действием, подобная геометрическая схема композиции (с преобладанием вертикалей и горизонталей) становится неприемлемой.

№ слайда 11 Ощущение динамики, волнения проявляется, пожалуй, сильней всего в другой прос
Описание слайда:

Ощущение динамики, волнения проявляется, пожалуй, сильней всего в другой простой геометрической фигуре - спирали. Многофигурная композиция, выполненная в 1509 - 1510 годах Рафаэлем, когда прославленный живописец создавал свои фрески в Ватикане, отличается динамизмом и драматизмом сюжета. Рафаэль так и не довел свой замысел до завершения, однако, его эскиз был гравирован неизвестным итальянским графиком Маркантинио Раймонди, который на основе этого эскиза и создал гравюру"Избиение младенцев". Если на подготовительном эскизе Рафаэля мысленно провести линии, идущие от смыслового центра композиции - точки, где пальцы воина сомкнулись вокруг лодыжки ребенка, - вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза (на рисунке эти линии проведены красным цветом), а после этого соединить эти куски кривой пунктиром, то с очень большой точностью получается золотая спираль. Это можно проверить, измеряя отношение длин отрезков, высекаемых спиралью на прямых, проходящих через начало кривой. Неизвестно, рисовал ли на самом деле Рафаэль золотую спираль при создании композиции "Избиение младенцев" или только "чувствовал" ее. Однако с уверенностью можно сказать, что гравер Раймонди эту спираль увидел. Об этом свидетельствуют добавленные им новые элементы композиции, подчеркивающие разворот спирали в тех местах, где она у нас обозначена лишь пунктиром. Эти элементы можно увидеть на окончательной гравюре Раймонди: арка моста, идущая от головы женщины, - в левой части композиции и лежащее тело ребенка - в ее центре

№ слайда 12 Переходя к примерам “золотого сечения” в живописи, нельзя не остановить своег
Описание слайда:

Переходя к примерам “золотого сечения” в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Посмотрим внимательно на картину "Джоконда". Композиция портрета построена на"золотых треугольниках".

№ слайда 13 В Скульптуре – Скульптурные сооружения, памятники воздвигаются, чтобы увекове
Описание слайда:

В Скульптуре – Скульптурные сооружения, памятники воздвигаются, чтобы увековечить знаменательные события, сохранить в памяти потомков имена прославленных людей, их подвиги и деяния. Известно, что еще в древности основу скульптуры составляла теория пропорций. Отношения частей человеческого тела связывались с формулой золотого сечения. – Пропорции «золотого сечения» создают впечатление гармонии красоты, поэтому скульпторы использовали их в своих произведениях. Скульпторы утверждают, что талия делит совершенное человеческое тело в отношении «золотого сечения». Так, например, знаменитая статуя Аполлона Бельведерского состоит из частей, делящихся по золотым отношениям. Великий древнегреческий скульптор Фидий часто использовал «золотое сечение» в своих произведениях. Самыми знаменитыми из них были статуя Зевса Олимпийского (которая считалась одним из чудес света) и Афины Парфенос. Измерения нескольких тысяч человеческих тел позволили обнаружить, что для взрослых мужчин это отношение равно 13/8 = 1,625, а для взрослых женщин оно составляет 8/5 = 1,6. Так что пропорции мужчин ближе к «золотому сечению», чем пропорции женщин. Было проведено большое число измерений на помещенных в журналах крупных портретах мужчин и женщин, на многих из них указанные отношения представляют «золотое сечение

№ слайда 14
Описание слайда:

№ слайда 15 В Архитектуре – Одним из красивейших произведений древнегреческой архитектуры
Описание слайда:

В Архитектуре – Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.). Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. выступы сделаны целиком из квадратов пентилейского мрамора. Благородство материала, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон (синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по «золотому сечению», то получим те или иные выступы фасада. Другим примером из архитектуры древности является Пантеон

№ слайда 16 Еще один архитектурный шедевр Москвы – дом Пашкова – является одним из наибол
Описание слайда:

Еще один архитектурный шедевр Москвы – дом Пашкова – является одним из наиболее совершенных произведений архитектуры В. Баженова. Прекрасное творение В. Баженова прочно вошло в ансамбль центра современной Москвы, обогатило его. Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812 г. При восстановлении здание приобрело более массивные формы. Не сохранилась и внутренняя планировка здания, о которой дают представления только чертеж нижнего этажа. Многие высказывания зодчего заслуживают внимание и в наши дни. О своем любимом искусстве В. Баженов говорил: «Архитектура – главнейшие имеет три предмета: красоту, спокойность и прочность здания... К достижению сего служит руководством знание пропорции, перспектива, механика или вообще физика, а всем им общим вождем является рассудок».

№ слайда 17 Одним из красивейших произведений древнегреческой архитектуры является Парфен
Описание слайда:

Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.). На рисунках виден целый ряд закономерностей, связанных с золотым сечением. Пропорции здания можно выразить через различные степени числа Ф=0,618...

№ слайда 18 На плане пола Парфенона также можно заметить "золотые прямоугольники":
Описание слайда:

На плане пола Парфенона также можно заметить "золотые прямоугольники":

№ слайда 19 В Живой Природе Приглядимся внимательно к побегу цикория. От основного стебля
Описание слайда:

В Живой Природе Приглядимся внимательно к побегу цикория. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс.

№ слайда 20
Описание слайда:

№ слайда 21 Скульпторы утверждают, что талия делит совершенное человеческое тело в отноше
Описание слайда:

Скульпторы утверждают, что талия делит совершенное человеческое тело в отношении золотого сечения. Измерения нескольких тысяч человеческих тел позволили обнаружить, что для взрослых мужчин это отношение равно в среднем примерно 13/8 = 1,625, а для взрослых женщин оно составляет 8/5 = 1,6. Так что пропорции мужчин ближе к "золотому сечению", чем пропорции женщин (однако женщина в обуви на каблуках может оказаться ближе к "золотым" пропорциям). У новорожденного пропорция составляет отношение 1 : 1, к 13 годам она равна 1,6, а к 21 году у мужчин равняется 1,625. Пропорции золотого сечения проявляются и в отношении других частей тела - длина плеча, предплечья и кисти, кисти и пальцев и т.д


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 30.10.2016
Раздел Математика
Подраздел Презентации
Просмотров85
Номер материала ДБ-302610
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх