Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация по математике на тему "Золотое сечение" (8 класс)

Презентация по математике на тему "Золотое сечение" (8 класс)

  • Математика

Документы в архиве:

Название документа для печати.pptx

"Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагор...
"Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагор...
Построение пропорции "Геометрия обладает двумя великими сокровищами. Первое -...
Второе золотое сечение "Геометрия обладает двумя великими сокровищами. Первое...
«Золотые фигуры» "Геометрия обладает двумя великими сокровищами. Первое - это...
«Золотые фигуры» "Геометрия обладает двумя великими сокровищами. Первое - это...
«Золотые фигуры» "Геометрия обладает двумя великими сокровищами. Первое - это...
Числа Фибоначчи "Геометрия обладает двумя великими сокровищами. Первое - это...
Заключение Необходимо сказать, что золотое сечение имеет большое применение в...
1 из 11

Описание презентации по отдельным слайдам:

№ слайда 1 "Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагор
Описание слайда:

"Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления отрезка в крайнем и среднем отношении" Иоганн Кеплер История золотого сечения Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян . Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников: Платон (427...347 гг. до н.э.) также знал о золотом делении. Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по «золотому сечению», то получим те или иные выступы фасада. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления. ПРЕДЫДУЩИЙ СЛАЙД

№ слайда 2 "Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагор
Описание слайда:

"Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления отрезка в крайнем и среднем отношении" Иоганн Кеплер История золотого сечения В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением, как в геометрии, так и в искусстве, особенно в архитектуре. Леонардо да Винчи, художник и ученый, видел, что в итальянских художниках большой эмпирический опыт, но недостаток знаний. Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное. Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд). Если на прямой произвольной длины, отложить отрезок m(φ), рядом откладываем отрезок M. На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов: ПРЕДЫДУЩИЙ СЛАЙД

№ слайда 3 Построение пропорции "Геометрия обладает двумя великими сокровищами. Первое -
Описание слайда:

Построение пропорции "Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления отрезка в крайнем и среднем отношении" Иоганн Кеплер Из точки В восстанавливается перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции. Именно эти отрезки использовал Евклид при построении правильного пятиугольника, т.к. каждая из сторон пятиугольной звезды делится другими именно в такой пропорции. В настоящее время существует гипотеза, что пентаграмма – первичное понятие, а «золотое сечение» вторично. Пентаграмму никто не изобретал, ее только скопировали с натуры. Вид пятиконечной звезды имеют пяти-лепестковые цветы плодовых деревьев и кустарников, морские звезды. Те и другие создания природы человек наблюдает уже тысячи лет. Поэтому естественно предположить, что геометрический образ этих объектов – пентаграмма – стала известна раньше, чем «золотая» пропорция. ПРЕДЫДУЩИЙ СЛАЙД

№ слайда 4 Второе золотое сечение "Геометрия обладает двумя великими сокровищами. Первое
Описание слайда:

Второе золотое сечение "Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления отрезка в крайнем и среднем отношении" Иоганн Кеплер Такая пропорция обнаружена в архитектуре, а также имеет место при построении композиций изображений удлиненного горизонтального формата. Деление осуществляется следующим образом. Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD. Радиусом АВ находится точка D, которая соединяется линией с точкой А. Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD. Точка Е делит отрезок AD в отношении 56 : 44. На рисунке показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника. Таким образом было доказано, что разделить отрезок в крайнем и среднем отношении можно не единственным способом. ПРЕДЫДУЩИЙ СЛАЙД

№ слайда 5 «Золотые фигуры» "Геометрия обладает двумя великими сокровищами. Первое - это
Описание слайда:

«Золотые фигуры» "Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления отрезка в крайнем и среднем отношении" Иоганн Кеплер Золотой треугольник: Проводим прямую АВ. От точки А откладываем на ней три раза отрезок О произвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ, на перпендикуляре вправо и влево от точки Р откладываем отрезки О. Полученные точки d и d1 соединяем прямыми с точкой А. Отрезок dd1откладываем на линию Ad1, получая точку С. Она разделила линию Ad1 в пропорции золотого сечения. Линиями Ad1 и dd1 пользуются для построения «золотого» прямоугольника. ПРЕДЫДУЩИЙ СЛАЙД

№ слайда 6 «Золотые фигуры» "Геометрия обладает двумя великими сокровищами. Первое - это
Описание слайда:

«Золотые фигуры» "Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления отрезка в крайнем и среднем отношении" Иоганн Кеплер Золотой прямоугольник: Если построить квадрат со стороной АВ=а, найти середину М отрезка АВ и провести дугу окружности радиусом МС с центром в точке М до пересечения с продолжением стороны АВ в точке Е, то точка В разделит отрезок АЕ в крайнем и среднем отношении. Чтобы убедиться в этом, заметим, что по теореме Пифагора МС2=а2+(а/2)2=5а2/4 В силу чего АЕ=а/2 +МЕ=(√5+1)а/2=φАВ   Прямоугольник АЕFD со сторонами АЕ=φАD называется золотым прямоугольником. Четырехугольник АВСD - квадрат. Нетрудно видеть, что прямоугольник ВЕFС также золотой, поскольку BC=a=φВЕ. Это обстоятельство сразу наводит на мысль о дальнейшем разбиении прямоугольника ВЕFС. ПРЕДЫДУЩИЙ СЛАЙД

№ слайда 7 «Золотые фигуры» "Геометрия обладает двумя великими сокровищами. Первое - это
Описание слайда:

«Золотые фигуры» "Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления отрезка в крайнем и среднем отношении" Иоганн Кеплер Золотой пятиугольник; построение Евклида. Замечательный пример «золотого сечения» представляет собой правильный пятиугольник – выпуклый и звездчатый: Для построения пентаграммы необходимо построить правильный пятиугольник. Пусть О - центр окружности, А - точка на окружности и Е - середина отрезка ОА. Перпендикуляр к радиусу ОА, восстановленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией. Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения. ПРЕДЫДУЩИЙ СЛАЙД

№ слайда 8 Числа Фибоначчи "Геометрия обладает двумя великими сокровищами. Первое - это
Описание слайда:

Числа Фибоначчи "Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления отрезка в крайнем и среднем отношении" Иоганн Кеплер С золотым сечением косвенно связано имя итальянского математика Леонардо из Пизы, который известен больше по своему прозвищу Фибоначчи (Fibonacci - сокращенное filius Bonacci, то есть сын Боначчи) В 1202г. им была написана книга "Liber abacci", то есть "Книга об абаке" . "Liber abacci" представляет собой объемистый труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший заметную роль в развитии математики в Западной Европе в течение нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими ("арабскими") цифрами. Рассмотрим такую задачу: «Сколько пар кроликов в один год от одной пары рождается? Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, дабы узнать, сколько пар кроликов родится в течение этого года, если природа кроликов такова, что через месяц пара кроликов воспроизведет другую, а рождают кролики со второго месяца после своего рождения» un=un-1+un-2 ПРЕДЫДУЩИЙ СЛАЙД

№ слайда 9 Заключение Необходимо сказать, что золотое сечение имеет большое применение в
Описание слайда:

Заключение Необходимо сказать, что золотое сечение имеет большое применение в нашей жизни. Было доказано, что человеческое тело делится в пропорции золотого сечения линией пояса.Раковина наутилуса закручена подобно золотой спирали. Благодаря золотому сечению был открыт пояс астероидов между Марсом и Юпитером – по пропорции там должна находиться ещё одна планета. Возбуждение струны в точке , делящей её в отношении золотого деления, не вызовет колебаний струны, то есть это точка компенсации. На летательных аппаратах с электромагнитными источниками энергии создаются прямоугольные ячейки с пропорцией золотого сечения. Джоконда построена на золотых треугольниках, золотая спираль присутствует на картине Рафаэля «Избиение младенцев». Пропорция обнаружена вкартине Сандро Боттичелли «Рождение Венеры». Известно много памятников архитектуры, построенных с использованием золотой пропорции, в том числе Пантеон и Парфенон в Афинах, здания архитекторов Баженова и Малевича. ПРЕДЫДУЩИЙ СЛАЙД

№ слайда 10
Описание слайда:

№ слайда 11
Описание слайда:

Автор
Дата добавления 19.10.2015
Раздел Математика
Подраздел Презентации
Просмотров188
Номер материала ДВ-078850
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх