Инфоурок / Технология / Другие методич. материалы / Презентация по профессии "Сварщик"

Презентация по профессии "Сварщик"


библиотека
материалов



Обязательный минимум для экзамена

для студентов I курса по ПМ.02 Сварка и резка деталей из различных сталей, цветных металлов и их сплавов, чугунов во всех пространственных положениях результатам обучения



  1. Оборудование сварочного поста для ручной дуговой сварки


Рабочее место сварщика – это сварочный пост (рис. 20), который оснащен необходимым инструментом и оборудованием для выполнения работ. Сварочные посты могут быть оборудованы как в производственном помещении, так и на открытой производственной площадке (строительно-монтажные условия работы). В зависимости от условий работы сварочные посты могут быть стационарными или передвижными. Сварочные посты необходимо размещать в специальных сварочных кабинах. В кабинах в качестве источников питания размещаются наиболее распространенные однопостовые сварочные трансформаторы типа ТДМ для сварки на переменном токе, или сварочные выпрямители типа ВД или ВДУ для сварки на постоянном токе. Применяются также и многопостовые источники питания на несколько независимых постов.

Кабина сварочного поста должна иметь размеры: 2(1,5) или 2(2) м и высоту не менее 2 м. В кабине устанавливается металлический стол, к верхней части кабины подводится зонд местной вытяжки воздуха от вентиляционной системы. В столе предусматриваются выдвижные ящики для хранения необходимого инструмента и приспособлений. Сварочный пост комплектуется источником питания, электрододержателем, сварочными проводами, зажимами для токонепроводящего провода, сварочным щитком с защитными светофильтрами, различными зачистными и мерительными инструментами. Сварщики обеспечиваются средствами личной защиты, спецодеждой.


  1. Электрододержатель, светофильтры, и кабели


Электрододержатель – приспособление для закрепления электрода и подвода к нему тока (рис. 21). Среди всего многообразия применяемых электрододержателей наиболее безопасными являются пружинные, изготовляемые в соответствии с существующими стандартами: I типа – для тока до 125 А; II типа – для тока 125—315 A; III типа – для тока 315– 500 А. Эти электрододержатели выдерживают без ремонта 8 000—10 000 зажимов. Время замены электрода не превышает 3—4 с. По конструкции различаются винтовые, пластинчатые, вилочные и пружинные электрододержатели.


Щитки сварочные изготавливаются двух типов: ручные и головные из легких негорючих материалов. Масса щитка не должна превышать 0,50 кг. Защитные светофильтры (затемненные стекла), предназначенные предназначенные для защиты глаз от излучения дуги, брызг металла и шлака, изготавливаются 13 классов или номеров. Номер светофильтра подбирается в первую очередь в зависимости от индивидуальных особенностей зрения сварщика. Однако следует учитывать некоторые объективные факторы: величину сварочного тока, состав свариваемого металла, вид дуговой сварки, защиту сварочной ванны от воздействия газов воздуха. Размер светофильтра 52x102 мм. При сварке покрытыми электродами следует ориентироваться на применение светофильтров различных номеров в зависимости от величины сварочного тока: 100 А–№С5; 200 А–№С6; 300 А–№С7; 400 А–№С8; 500 А –№С9 ит. д. При сварке плавящимся электродом тяжелых металлов в инертном газе следует пользоваться светофильтром на номер меньше, а легких металлов – на номер больше по сравнению со светофильтром при сварке покрытыми электродами. При сварке в среде С02 применяют следующие светофильтры: до 100 А–№С1; 100—150 А–№С2; 150—250 А – № СЗ; 250—300 А –№С4; 300—400 А–№С5 ит. д. Светофильтры вставляются в рамку щитка, а снаружи светофильтр защищают обычным стеклом от брызг металла и шлака. Прозрачное стекло периодически заменяют. Кабели и сварочные провода необходимы для подвода тока от источника питания к электрододержателю и изделию.

Кабели изготавливают многожильными (гибкими) по установленным нормативам для электротехнических установок согласно ПУЭ (Правила устройства и эксплуатации электроустановок) из расчета плотности тока до 5 А/мм2 при токах до 300 А. Электрододержатели присоединяются к гибкому (многожильному) медному кабелю марки ПРГД или ПРГДО. Кабель сплетен из большого числа отожженных медных проволочек диаметром 0,18— 0,20 мм. Применять провод длиной более 30 м не рекомендуется, так как это вызывает значительное падение напряжения в сварочной цепи. Рекомендуемые сечения сварочных проводов для подвода тока от сварочной машины или источника питания к электрододержателю и свариваемому изделию приведены в (табл. 2).



  1. Основные требования безопасности труда при ручной дуговой сварке


При выполнении сварочных работ существуют опасности для здоровья рабочего: поражение электрическим током; поражение глаз и открытых поверхностей кожи лучами дуги; отравление вредными газами и пылью; ожоги от разбрызгивания электродного расплавленного металла и шлака; ушибы и порезы в процессе подготовки изделий под сварку и во время сварки. Поэтому, прежде чем приступить к сварочным работам, необходимо изучить на рабочем месте инструкцию по безопасным приемам обращения со сварочным оборудованием и расписаться в регистрационном журнале. После этого необходимо ознакомиться с порядком включения и выключения питающей сети высокого напряжения, убедиться в наличии актов обязательной ежегодной проверки заземления и сопротивления изоляции коммутационных проводов и электрододержателей. Во время сварки необходимо работать только в спецодежде. Куртка должна быть надета поверх брюк и застегнута, брюки должны закрывать обувь. Запрещается пользоваться неисправными сварочными щитками, разбитыми защитными светофильтрами. Нельзя производить сварочные работы при отключенной или неисправной системе вентиляции. После окончания работы электрододержатель должен находиться в таком положении, при котором исключался бы его контакт с токоведущими частями сварочного поста. Сварочное оборудование в процессе эксплуатации требует внимательного ухода и обслуживания. Сварщику необходимо принимать следующие меры: перед включением источника питания очистить его от пыли, грязи, случайно попавших огарков электродов или кусков сварочной проволоки; проверить надежность изоляции сварочных проводов и их соединения, при необходимости подтянуть крепление, изолировать место повреждения сварочного кабеля; убедиться в наличии заземления. Эти меры гарантируют длительную, надежную и безопасную работу источника питания. При включении источника питания могут быть обнаружены его дефекты или неисправности. В этом случае необходимо отключить источник питания и сообщить об этом мастеру, наладчику или электромонтеру для устранения неисправностей источника питания.


  1. Общие сведения об источниках питания



Традиционным источником переменного тока является сварочный трансформатор. Источником постоянного тока является выпрямитель, который сконструирован на базе трансформатора и полупроводникового выпрямителя. Широкое распространение получили также инверторные источники тока, которые применяются для сварки как на переменном, так и на постоянном токе. Промежуточное положение между традиционными выпрямителями и инверторами занимают источники, в состав которых входит простейший 50-Гц сварочный выпрямитель регулировка тока осуществляется полупроводниковым ключевым регулятором, работающим на повышенной частоте. Областями применения источников переменного и постоянного тока являются: ручная дуговая сварка штучными электродами, автоматическая сварка под слоем флюса, ручная и автоматическая сварка вольфрамовым электродом легких сплавов в среде инертных газов. Технологические возможности источников питания определяются внешними вольтамперными характеристиками. Статическая характеристика источника питания представляет собой зависимость выходного напряжения от тока нагрузки при постоянном значении напряжения питающей сети в установившемся режиме. По виду статических внешних характеристик источники тока можно подразделить на источники с падающими (ПВХ) «крутыми» и «пологими» или жесткими (ЖВХ) внешними характеристиками.





  1. Трансформаторы для ручной дуговой сварки


Трансформаторы выпускаются в соответствии с соответствующими стандартами на номинальные силы тока 160; 250; 315; 400 и 500 А. Конструктивно трансформаторы серии ТДМ относятся к группе трансформаторов стержневого типа. Для них характерны малый расход активных материалов, простота конструкции, высокие сварочные и энергетические показатели, широкие пределы регулирования тока Одним из распространенных трансформаторов является ТДМ-317. В нижней части сердечника трансформатора размещается первичная обмотка, состоящая из двух катушек, расположенных на двух стержнях. Катушки обмотки закреплены неподвижно. Вторичная обмотка расположена на значительном расстоянии от первичной, катушки обмоток соединены параллельно. Вторичная обмотка перемещается по сердечнику с помощью винта и рукоятки. Сварочный ток регулируется изменением расстояния между первичной и вторичной обмотками



  1. Сварочные выпрямители


Отечественные сварочные выпрямители имеют, как правило, трехфазное питание, выполняются как на диодах, так и на тиристорах. В выпрямителях используются трехфазная мостовая, двойная трехфазная схема с уравнительным дросселем и кольцевая схема выпрямления. В выпрямителях большой мощности диодное выпрямление во вторичном контуре сочетается с тиристорным регулированием по первичной стороне. В зависимости от числа сварочных постов, которые могут быть одновременно подключены к источнику, выпрямители подразделяются на однопостовые и многопостовые. Выпрямители для ручной дуговой сварки выпускаются в соответствии с существующими стандартами на токи 200; 315; 400 А при ПН = 60 % и имеют крутопадающие характеристики Выпрямители выполнены по трехфазной мостовой схеме на кремниевых диодах. Основу выпрямителя составляет трансформатор с подвижными обмотками. Одновременное переключение первичных и вторичных обмоток трансформатора с «треугольника» на «звезду» позволяет получить две ступени регулирования тока. Выпрямители для механизированной сварки выпускаются на токи 315 и 630 А, ПВ = 60 % и имеют пологопадающие внешние характеристики.

  1. Источники со звеном повышенной частоты


Освоение производства источников питания со звеном повышенной частоты является перспективным и интенсивным направлением совершенствования оборудования для дуговой сварки. Ниже приводятся сведения об инверторных источниках тока ВДУЧ-301 и ВДЧИ-251 Включение высокочастотного звена в структуру источников сварочного тока позволяет существенно снизить их массу и габаритные размеры, повысить КПД и коэффициент мощности, обеспечив широкие пределы регулирования и хорошие сварочные технологические свойства. Инверторный тиристорный источник ВДУЧ-301 с пологопадающими и крутопадающими внешними характеристиками является универсальным выпрямителем для механизированной сварки в среде защитных газов и для ручной дуговой сварки. Инверторный транзисторный источник ВДЧИ-251 предназначен для ручной дуговой сварки штучными электродами на постоянном токе в непрерывном и импульсном режимах. Выпрямитель имеет падающие внешние характеристики.



  1. Аппараты для механизированной и автоматической дуговой сварки


В настоящее время широко применяется механизированная сварка. Это объясняется высокой маневренностью полуавтоматов, возможностью производить сварку в труднодоступных местах. Механизированная сварка широко применяется на конвейерных линиях в машиностроении при сварке корпусов всех видов транспортных средств и строительно-монтажных конструкций при их предварительной сборке и сварке и т. д. Полуавтоматы для дуговой сварки плавящимся электродом классифицируют по нескольким признакам в соответствии со стандартом. По способу защиты сварочной дуги принята следующая классификация полуавтоматов: в активных защитных газах (Г); в инертных газах (И); под флюсом (Ф); открытой дугой (О). По способу регулирования скорости подачи электродной проволоки выпускаются полуавтоматы с плавным, ступенчатым и комбинированным регулированием. Полуавтоматы различают также по способу подачи электродной проволоки: толкающему, тянущему, универсальному. По способу охлаждения горелки выпускают полуавтоматы с естественным охлаждением горелки (до 300 А) и с принудительным охлаждением (500 А). Срок службы сварочных полуавтоматов – 5 лет со сменой сварочной горелки через каждые полгода. В полуавтоматах механизирована только подача электродной проволоки, которая подается в зону горения дуги через гибкий пустотелый шланг, поэтому такие полуавтоматы называют шланговыми. Для сварки низкоуглеродистых и низколегированных сталей плавящимся электродом в среде углекислого газа во всех пространственных положениях, кроме потолочного, широко применяются полуавтоматы серии ПДГ. Стабилизация выходных параметров источника питания совместно со стабилизацией скорости подачи электродной проволоки позволяет получать сварные соединения высокого качества. Полуавтоматы этой серии состоят из подающего механизма, источника питания постоянного тока или импульсного источника питания, сварочной горелки, газовой аппаратуры и соединительных гибких шлангов. В комплект полуавтомата входит сварочная горелка типа ГДПГ.

  1. Блок управления


Управление полуавтоматом осуществляется специальным блоком БУСП-2 (блок управления сварочными полуавтоматами)

В режиме наладки блок управления обеспечивает выполнение следующих операций: включение подачи газа для настройки его расхода или дозировки; установка заданной скорости подачи проволоки; выбор рабочего цикла для сварки длинными, короткими и точечными швами. В режиме сварки блок управления обеспечивает выполнение команд начала и окончания сварки. При поступлении команды начала сварки включается подача газа, затем источник питания и через 0,5 с включается подача проволоки. При поступлении команды о прекращении сварки выключается электродвигатель подающего механизма и производится его торможение, отключается источник питания и подача защитного газа; блок управления возвращает схему в исходное положение. Полуавтоматы типа ПДИ обеспечивают сварку в импульсном режиме.

Полуавтоматом ПДГ-516 (ПШ-13) можно сваривать как сплошной стальной, так и порошковой проволоками. Для сварки в различных пространственных положениях некоторые типы полуавтоматов серии

ПДГ комплектуются консольно-поворотным устройством. Такие устройства позволяют увеличивать производительность сварочных работ как на стационарных установках так и передвижных. Технические характеристики некоторых полуавтоматов. В связи с унификацией основных узлов полуавтоматов более широкое распространение получают универсальные полуавтоматы (быстро переналаживаемые). Одним из таких полуавтоматов является ПШ-112. Полуавтомат предназначен для сварки самозащитной и порошковой проволокой, но легко и быстро переналаживается на сварку в углекислом газе сплошной проволокой.


  1. Сварочные горелки для полуавтоматической сварки


Рабочим инструментом сварочного полуавтомата является сварочная горелка. Она предназначена для направления в зону сварочной дуги электродной проволоки, защитного газа или флюса. Конструкции сварочных горелок, применяемых в полуавтоматах, унифицированы в соответствии с технологическими требованиями.

Рукоятка сварочной горелки должна быть прочной и удобной в работе. С этой целью ее изготовляют из изоляционного материала в форме, наиболее удобной для руки сварщика. На рукоятке установлены предохранительный щиток и пусковая кнопка, которые должны быть размещены так, чтобы обеспечить защиту от ожогов руки сварщика и удобство управления пусковой кнопкой.

Наиболее ответственными элементами сварочной горелки являются сопло и токоподводящий наконечник.

Сопло горелки во время работы находится в зоне высокой температуры, расплавленный металл налипает на поверхность сопла при разбрызгивании. В целях уменьшения налипания брызг расплавленного металла поверхность сопла горелки следует хромировать и полировать или изготавливать из специальной керамики, или применять специальные аэрозоли. Для неохлаждаемых горелок применяется одно сменное сопло, которое изготавливается, как правило, из меди. Для водоохлаждаемых горелок применяются два сопла –одно водоохлаждаемое несъемное, другое съемное для периодической зачистки от налипших брызг.

Наиболее широкое применение получили медные наконечники со сроком службы 5—10 ч непрерывной работы. Применяют также медно-графитовые и медно-вольфрамовые наконечники. Для надежной защиты зоны сварочной дуги от влияния окружающего воздуха необходимо, чтобы поток защитного газа был спокойным, без завихрений, равномерным (ламинарным).

Основным параметром сварочных горелок является номинальный сварочный ток, который должен соответствовать стандартному ряду: 125; 160; 220; 250; 315;400;500;630 А.

Сварочные горелки ГДПГ-302 и ГПДГ-502 аналогичны по конструкции горелке ГПДГ-501-4 и имеют водяное охлаждение.

Горелки ГДПГ-101-10, ГДПГ-102, ГДПГ-301-8 рассчитаны на малые токи и поэтому не имеют водяного охлаждения. Соответственно у них отсутствуют водоохлаждаемое сопло и водоподводящие шланги.

При механизированной сварке под флюсом применяют сварочные горелки с бункером для флюса и по мере необходимости – водоохлаждающим соплом. При сварке неплавящимся электродом токоподводящий наконечник заменяется специальным зажимом (цангой).

Для подачи электродной проволоки от полуавтомата к сварочной горелке используют гибкие шланги. Для сварочных горелок, работающих на токах до 315 А включительно, в гибком шланге проложены провода цепей управления и сварочного тока, а по направляющему каналу проходит электродная проволока. При высоких значениях тока в гибком шланге по направляющему каналу проходит только электродная проволока.

Для подвода цепей управления и сварочного тока имеется специальный шланг. Защитный газ подается в сварочную горелку по специальным шлангам. Завод-изготовитель обычно комплектует сварочные горелки и гибкие шланги к ним.

В зависимости от материала и диаметра электродной проволоки гибкие шланги изготовляют длиной 2,0—3,0 м.

При движении электродной проволоки по направляющему каналу гибкого шланга происходит засорение или повреждение канала, поэтому направляющие каналы должны быть сменными. При работе с обедненной стальной электродной проволокой срок службы направляющих каналов и самих шлангов увеличивается почти в 2 раза. Диаметр канала и диаметр проволоки должны быть строго согласованы Электродная проволока перемещается от полуавтомата через гибкий шланг к сварочной горелке с помощью подающего механизма.



  1. Механизм подачи проволоки


Существуют различные схемы подающих механизмов. В схеме толкающего типа электродвигатель подающего механизма имеет жесткую характеристику. Такая схема применяется при сварке стальной электродной проволокой. В схеме тянущего типа подающий механизм размещается непосредственно с горелкой. Такое расположение подающего механизма снижает сопротивление проталкивания сварочной проволоки и поэтому можно увеличить длину гибкого шланга. Однако это приводит к увеличению массы горелки и снижению ее маневренности. Применяют комбинированные варианты подающих механизмов, работающих по схеме «тяни-толкай». В этом случае требуется установка дополнительного электродвигателя с направляющими роликами.

Для синхронизации процесса «тяни-толкай» необходимо установить два электродвигателя: толкающий и тянущий.

Электродвигатель тянущего механизма, натянув электродную проволоку, автоматически снижает свои обороты. Толкающий электродвигатель имеет постоянные обороты. При включении электродвигателей от пусковой кнопки одновременно подается напряжение на конец сварочной проволоки. При касании проволоки свариваемого изделия зажигается дуга, и начинается процесс сварки. Подающие механизмы, перечисленные выше, являются редукторными.

Применяют три модификации редукторных подающих механизмов: ПМЗ-1 – подающий механизм закрытого типа с кассетой для стальной проволоки массой 5 кг; ПМО-1 – подающий механизм открытого типа с кассетой стальной проволоки массой 12 и 20 кг; ПМТ-1 – подающий механизм с тележкой с бухтой стальной проволоки массой до 50 кг.

Выпускают новые конструкции безредукторных подающих механизмов: планетарные «Изаплан» и импульсные «Интермигмаг» (с пульсирующей подачей проволоки). Основными элементами механизма «Изаплан» (рис. 30) являются планетарные подающие ролики (1), корпус (2) с коническим отверстием, основание головки (3), электропривод (4).

Безредукторный подающий механизм «Интермигмаг» применяют при импульсно-дуговой сварке.

Планетарная подающая головка «Изаплан» укреплена на полом валу электродвигателя постоянного тока.

Электродная проволока проходит через полый валик и поступает на планетарные ролики подающей головки.


  1. Предназначение редуктора , расходометра, подогревателя


Редуктор предназначен для снижения давления защитного газа после баллона. При использовании углекислого газа применяют стандартные баллонные редукторы для кислорода – ДКД-8-65 или специальные для СО2 – У-30.

При сварке в инертных газах применяются редукторы давления: АР-10, АР-40 и АР-150.

Рис. 33. Расходомеры: а – с конусной стеклянной трубкой (ротаметр): 1 – стеклянная трубка; 2 – поплавок; 3 – корпус; б – с дросселирующей диафрагмой (Р1—Р2 – перепад давления); 1 – диафрагма; в – с калиброванной диафрагмой; 1 – диафрагма

Расходомеры предназначены для измерения расхода газа, благодаря чему можно поддерживать дозировку защитного газа. Различают несколько разновидностей расходомеров: поплавковый (ротаметр), дроссельный (с калиброванным отверстием в диафрагме) и их разновидности (рис. 33).

В комплект аппаратуры сварочного поста входит и отсекатель газа. Отсекатель газа – это электромагнитный клапан, который предназначен для автоматического управления подачей газа. Включение электромагнитного клапана сблокировано с пусковой кнопкой полуавтомата, что обеспечивает продувку газовых каналов и подготовку защитной среды перед зажиганием сварочной дуги, а также сохранение защитной среды после гашения дуги до полного остывания металла.


  1. Автоматы тракторного типа АДФ и АДГ


Автоматы тракторного типа АДФ и АДГ предназначены для дуговой сварки под флюсом и в среде защитного газа стыковых и угловых соединений типа «тавр» или «лодочка» электродной проволокой сплошного сечения.

Сварку можно выполнять как внутри колеи, так и вне ее на расстоянии до 200 мм. Размер колеи не должен превышать 295 мм. Положение дуги (электрода) контролируется с помощью светоуказателя. Все элементы управления сварочным процессом и перемещением трактора расположены на пульте управления.

Для сварки под флюсом на переменном токе автоматы АДФ комплектуют сварочными трансформаторами ТДФ- 1002, ТДФ-1601, ГДФЖ-2002.

Для сварки под флюсом и в среде защитного газа на постоянном токе автоматы АДФ и АДГ комплектуют универсальными выпрямителями ВДУ-505 или ВДУ-1201.

Для дуговой сварки изделий с различными формами и размерами сварных швов таких, как криволинейные швы, швы с переменным сечением, применяют автоматы подвесного типа. В большинстве случаев автоматы подвесного типа самоходные. Их перемещение осуществляется по направляющему монорельсу с помощью самоходной тележки. Автоматы комплектуют источником питания переменного или постоянного тока, которые обеспечивают номинальный сварочный ток и имеют необходимую внешнюю характеристику. Промышленность выпускает автоматы серии А-1400. Для сварки под флюсом углеродистых сталей применяют автоматы А-1401, А-1410.

Для дуговой сварки в среде углекислого газа углеродистых сталей – автоматы А-1417; для дуговой сварки в среде инертного газа изделий из алюминия и его сплавов применяют автоматы А-1431 и т. д. Сварочные автоматы серии А-1400 рассчитаны на длительную работу и могут применяться как самостоятельно, так и входить в комплект автоматических линий. Отличительной особенностью этих автоматов является их пригодность для дуговой сварки различных типов швов. Они обеспечивают широкий диапазон регулирования режимов сварки, а также возможность быстрой переналадки при изменении сварочной технологии.

1. Автоматы А-1410, А-1416 и ГДФ-1001 применяют для сварки под флюсом; автомат А-1406 – под флюсом и в среде углекислого газа; автомат А-1417 – в среде углекислого газа; автомат А-141117 – в среде углекислого и инертного (аргон) газов; автоматы А-1431 и АД-143 – в среде аргона; автомат АД-Ш – в среде аргоно-кислородной смеси.

2. Для автоматов АД-111 режим работы ПВ = 60 %, для остальных автоматов ПВ = 100 %.

3. Для автомата АД-143 диаметр неплавящегося электрода 8—12 мм, скорость его перемещения 14—21 м/ч.

Одним из направлений повышения производительности сварочного процесса является увеличение скорости сварки. Однако скорость перемещения серийных сварочных автоматов, выпускаемых для различных способов дуговой сварки, доведена до предельного значения.

Поэтому большое значение имеет концентрация операций при одновременной сварке в нескольких местах одного или нескольких изделий. Для


  1. Сварочные материалы


При электрической сварке плавлением применяются следующие сварочные материалы: сварочная проволока, неплавящиеся и плавящиеся электродные стержни, покрытые электроды. Стальная сварочная проволока, предназначенная для сварки и наплавки, регламентируется стандартами. Она классифицируется по группам и маркам стали: низкоуглеродистая – 6 марок, легированная – 30, высоколегированная – 39 марок. Обозначение марок проволоки составляется из сочетания букв и цифр. Первые две буквы «Св» означают – сварочная проволока. Следующие за ними первые две цифры указывают содержание углерода в сотых долях процента. Далее следуют буквенные обозначения элементов, входящих в состав проволоки.

Если сварочная проволока не обеспечивает требуемого химического состава наплавленного металла, то применяют порошковую проволоку. Эта проволока представляет собой низкоуглеродистую стальную оболочку, внутри которой запрессован порошок. Этот порошок состоит из ферросплавов, за счет которых осуществляется легирование металла шва или железный порошок для увеличения наполнения шва. Порошковую проволоку изготавливают сворачиванием ленты в трубку при протяжке ее через калиброванное отверстие (фильеру). В практике находят применение трубчатые и другие конструкции порошковой проволоки, некоторые из них приведены на рис. 34.

Более сложные конструкции порошковой проволоки приводят к увеличению глубины противления, уменьшению выгорания полезных примесей (марганца и кремния), снижению содержания кислорода и азота в наплавленном металле, более равномерному плавлению сердечника. По составу сердечника порошковая проволока делится на пять типов: ПП-АН1; ПП-АН7; ПП-2ДСК; ПП-АН10 и ПП-АН9. Из них первые три типа используют для сварки без дополнительной защиты, а два последних – для сварки в углекислом газе.

В качестве плавящихся электродов для автоматической наплавки под слоем флюса поверхностей больших размеров и для получения небольшого провара основного металла применяют электродную ленту. Электродная лента изготавливается различного химического состава в зависимости от назначения. Толщина готовой ленты 0,2—1,0 мм и ширина 15—100 мм.

Неплавящиеся электродные стержни изготавливают из электротехнического угля или синтетического графита, а также из вольфрама. Угольные и графитовые электроды имеют форму цилиндрических стержней диаметром 5—25 мм и длиной 200—300 мм. Конец электродов затачивается на конус.

Графитовые электроды более электропроводны и обладают большей стойкостью против окисления на воздухе при высоких температурах. Это позволяет применять повышенную плотность тока и сократить расход электродов.

Наиболее широкое применение имеют вольфрамовые электроды. Они изготавливаются из чистого вольфрама или с различными присадок (1—3 %) обеспечивает улучшенное зажигание дуги, повышает стойкость электрода при повышенной плотности тока. Электроды из вольфрама с активизирующими присадками применяют для сварки переменным и постоянным током прямой и обратной полярности. Электроды для ручной дуговой сварки представляют собой металлический стержень, на поверхность которого методом окунания или опрессовкой под давлением наносится покрытие (обмазка) определенного состава и толщины. Покрытие должно обеспечить ла шва требуемого химического состава и свойств и др. Покрытие должно обеспечить устойчивое горение дуги получение металла шва требуемого химического состава и свойств и др. Эти требования обеспечиваются материалами электродного стержня и покрытия, в состав которых входят стабилизирующие, шлакообразующие раскисляющие легирующие и другие вещества.


Покрытые электроды для ручной дуговой сварки и наплавки подразделяются по назначению на группы: 1) для сварки углеродистых и низкоуглеродистых конструкционных сталей обозначаются буквой У; 2) для сварки легированных сталей – Л; 3) для сварки теплоустойчивых сталей – Т; 4) для сварки высоколегированных сталей – В; 5) для наплавки поверхностных слоев – Н.

Электроды подразделяются по толщине покрытия с обозначением соответствующими буквами: М – с тонким покрытием, С – со средним покрытием, Д – с толстым покрытием, Г – с особо толстым покрытием.

В зависимости от состава покрытия электроды подразделяют по его виду: А (кислое покрытие), Б (основное покрытие), Ц (целлюлозное покрытие), Р (рутиловое) и П (покрытие прочих видов).



  1. Флюсы для дуговой и электрошлаковой сварки


Флюсы, применяемые при электрической сварке плавлением, обеспечивают надежную защиту зоны сварки от атмосферных газов, создают условия устойчивого горения дуги, обеспечивают хорошее формирование шва. Швы получаются плотными и несклонными к кристаллизационным трещинам. После остывания шва шлаковая корка легко удаляется. Флюсы обеспечивают наименьшее выделение пыли и газов, вредных для здоровья сварщика.

Флюсы классифицируют по назначению, химическому составу, структуре, степени легирования шва, способу изготовления, зависимости вязкости шлака от температуры.

По назначению флюсы делят на три группы:

для сварки углеродистых и легированных сталей;

для сварки высоколегированных сталей;

для сварки цветных металлов и сплавов.



  1. Газы, применяемые при электрической сварке плавлением


Для защиты дуги при электрической сварке плавлением применяют такие газы, как аргон, гелий, углекислый газ, азот, водород, кислород и их смеси.

Аргон и гелий являют одноатомными инертными газами. Они бесцветны, не имеют запаха. Аргон тяжелее воздуха, что обеспечивает хорошую защиту сварочной ванны. Аргон, предназначенный для сварки, регламентируется нормативными документами и поставляется двух сортов в зависимости от процентного содержания аргона и его назначения. Аргон высшего качества предназначен для сварки ответственных изделий из цветных металлов. Аргон первого сорта предназначен для сварки сталей. Смеси аргона с другими газами в определенных отношениях поставляют по особым ТУ (техническим условиям).

Гелий значительно легче воздуха. Предусматривается два сорта газообразного гелия: гелий высокой чистоты и гелий технический.

Углекислый газ в нормальных условиях представляет собой бесцветный газ с едва ощутимым запахом. Углекислый газ, предназначенный для сварки, должен соответствовать существующим нормативным документам, в зависимости от содержания он выпускается трех марок: сварочный, пищевой и технический. Летом в стандартные баллоны емкостью 40 дм3 (литров) заливается 25 дм3 (литров) углекислоты, при испарении которой образуется 12 600 дм3 газа. Зимой заливается 30 дм3 (литров) углекислоты, при испарении которой образуется 15 120 дм3 газа. Сварочную углекислоту не разрешается заливать в баллоны из-под пищевой и технической углекислоты.

Водород в чистом виде представляет собой газ в 14,5 раза легче воздуха, не имеет запаха и цвета.

Предусматривается три марки технического водорода, водород применяют только в смесях.

Кислород применяется как добавка к аргону или углекислому газу. Предусматривается три сорта кислорода: 1-й, 2-й и 3-й.

В последние годы все большее применение находят смеси таких газов, как CO2 (углекислый газ), Ar (аргон), O2 (кислород). При сварке в газовых смесях для точной дозировки газов применяют смесители. В настоящее время применяют смесители: УКП-1-71 для смеси (СО2++ O2); АКУП-1 для смеси (Ar + CO2 + O2); УКР-1-72 для смеси (CO2 + O2). Перед смесителем устанавливают осушители для отделения паров или конденсата влаги.



  1. Выбор режимов при ручной дуговой сварке


Качество сварных швов при ручной дуговой сварке зависит от квалификации

сварщика. Сварщик должен уметь быстро зажигать дугу, поддерживать необходимую

ее длину, равномерно перемещать дугу вдоль кромок свариваемого изделия,

выполнять необходимые колебательные движения электродом при сварке и т. д.

Наиболее широкое распространение получила ручная дуговая сварка (РДС)

покрытыми металлическими плавящимися электродами на постоянном и переменном

токе.

При правильно выбранных режимах РДС в нижнем положении можно обеспечить

качественный провар металла шва до 3—4 мм. Чтобы избежать непровара металла

шва при РДС металла больших толщин и добиться хорошего формирования шва,

применяют различную форму разделки кромок деталей.

Формы подготовки кромок в зависимости от толщины свариваемых деталей и

различных способов сварки


При выборе формы подготовки кромок деталей сварных соединений наряду с необходимостью обеспечения провара учитывают технологические и экономические условия процесса сварки.

Так, стыковые соединения с V-образным скосом кромок рекомендуется применять на металле толщиной 3—26 мм. При большой толщине резко возрастает масса наплавленного металла. При толщине металла до 60 мм применяется Х-образный скос кромок. В последнем случае количество наплавленного металла по сравнению с наплавленным металлом при V-образном скосе кромок уменьшается почти в 2 раза. Это также приводит к уменьшению напряжений в шве и уменьшению деформаций сварного соединения. Режимом сварки называют совокупность характеристик сварочного процесса, обеспечивающих получение сварных швов заданных размеров, форм и качества. При РДС такими характеристиками являются: диаметр электрода, сила сварочного тока, напряжение дуги, скорость сварки, род тока, полярность и др. Примерное соотношение между диаметром электрода и толщиной листов свариваемого изделия приведено ниже:

При сварке многопроходных швов стремятся сварку всех проходов выполнять на одних и тех же режимах. Исключением является первый проход. При ручной сварке многопроходных швов первый проход выполняется, как правило, электродами диаметром 3—4 мм, так как применение электродов большего диаметра затрудняет провар корня шва. Для приближенных расчетов силы сварочного тока на практике пользуются формулой: Iсв = kd, где d – диаметр стержня электрода, мм; k – коэффициент, принимаемый в зависимости от диаметра электрода:

При недостаточном сварочном токе дуга горит неустойчиво, а при чрезмерном токе электрод плавится слишком интенсивно, вследствие чего возрастают потери на разбрызгивание, ухудшается формирование шва. Допустимая плотность тока зависит от диаметра электрода и вида покрытия. Чем больше диаметр электрода, тем меньше допустимая плотность тока, так как ухудшаются условия охлаждения. Вид покрытия оказывает влияние на скорость плавления электрода.


Допустимая плотность тока (А/мм2) в электроде при ручной дуговой сварке

Напряжение дуги при РДС изменяется в пределах 20—36 В и при проектировании технологических процессов ручной сварки не регламентируется. Скорость сварки выбирают с учетом необходимости получения слоя наплавленного металла, с определенной площадью поперечного сечения. Скорость сварки подбирают опытным путем при сварке пробных образцов. Род и полярность сварочного тока зависят в основном от толщины металла и марки электрода. Малоуглеродистые и низколегированные стали средней и большой толщины чаще сваривают на переменном токе. Ориентировочные режимы сварки конструкционных сталей приведены в табл. 34.


  1. Зажигание дуги.



Для начинающего сварщика очень важно овладеть навыком зажигания дуги. Зажигание дуги выполняется кратковременным прикосновением конца электрода к изделию или чирканьем концом электрода о поверхность металла. «Ведут» дугу таким образом, чтобы кромки свариваемых деталей проплавлялись с образованием требуемого количества наплавленного металла и заданной формы шва. Основные, наиболее широко применяемые способы перемещения конца электрода при РДС. Существуют различные способы выполнения швов по длине и сечению. Выбор способа выполнения швов определяется длиной шва и толщиной свариваемого металла. Условно считают швы длиной до 250 мм короткими, длиной 250—1 000 мм – средними, а более 1 000 мм – длинными

а в соединениях с угловыми швами также от середины к концам обратноступенчатым способом Обратноступенчатая сварка является наиболее эффективным методом уменьшения остаточных напряжений и деформаций. Предыдущий шов остывает до температуры 200—300 °С. При охлаждении одновременно с уменьшением ширины шва уменьшается и первоначально расширенный зазор, именно поэтому остаточные деформации становятся минимальными. При сварке стыковых или угловых швов большого сечения шов выполняется несколькими слоями При этом каждый слой средней и верхней части шва может выполняться как за один проход так и за два и более проходов С точки зрения уменьшения остаточных деформаций сварка за один проход предпочтительнее. Если ширина шва достигает 14—16 мм, то чаще применяется многопроходный способ сварки швов. При сварке металла большой толщины (> 15 мм) выполнение каждого слоя «на проход» является нежелательным. Такой способ приводит к значительным деформациям и образованию трещин в

первых слоях, так как первый слой успевает остыть. Для предотвращения образования трещин заполнение разделки кромок при РДС следует производить каскадным методом или «горкой». В этом случае каждый последующий слой накладывается на еще не успевший остыть предыдущий слой, что позволяет снизить сварочные напряжения и деформации. Заполнения разделки кромок каскадным методом и «горкой»

При каскадном методе заполнения шва весь шов разбивается на короткие участки в 200 мм, и сварка каждого участка производится таким методом. По окончании сварки первого слоя первого участка, не останавливаясь, продолжают выполнение первого слоя на соседнем участке. При этом каждый последующий слой накладывается на неуспевший остыть металл предыдущего слоя. Сварка «горкой» является разновидностью каскадного способа и ведется двумя сварщиками одновременно, от середины к краям. Эти оба метода выполнения шва представляют собой обратноступенчатую сварку не только по длине, но и по сечению шва. Прежде чем приступить к сварке, необходимо

ознакомиться с технической документацией. Процесс изготовления любой конструкции представлен в технологических картах. Кроме технологических карт к технологическому процессу прилагаются чертежи изделия: общий вид и деталировка с необходимыми пояснениями и техническими условиями. На общем виде указываются обозначения сварных швов. При РДС малоуглеродистых сталей в зависимости от прочностных показателей металла широко используют электроды с рутиловым покрытием типов Э42 иЭ46, например, АНО-6, АНО-4 и др. Для сварки ответственных стальных конструкций применяют электроды с основным покрытием типов Э42АиЭ46А, например: УОНИ-13/45, СМ-11, Э-138/45Н и др.


  1. Технология сварных швов во всех пространственных положениях


Сварка швов в вертикальном положении затруднена, так как металл сварочной ванны под воздействием силы тяжести стекает вниз. Для уменьшения воздействия

силы тяжести на металл сварочной ванны сокращают объем самой сварочной ванны путем снижения сварочного тока на 15—20 %. Диаметр электрода не должен превышать 4—5 мм. Сварка вертикальных швов (рис. 69) выполняется снизу вверх (рис. 69, а) или сверху вниз (рис. 69, б). Наиболее удобной является сварка снизу вверх. При этом дуга возбуждается в самой нижней точке шва. Как только нижняя часть сварочной ванночки начинает кристаллизоваться, образуется площадка,

на которой удерживаются капли металла; электрод отводится чуть вверх и располагается углом вперед. При сварке сверху вниз в начальный Для улучшения формирования шва при сварке вертикальных швов должна поддерживаться короткая дуга. При сварке снизу вверх поперечные колебания не производятся или они должны быть очень незначительными. Сварка горизонтальных швов сложнее, чем сварка вертикальных швов. Она выполняется сварщиками высокой квалификации. Повышение производительности труда при ручной сварке может быть достигнуто за счет организационных и технических мероприятий. При ручной сварке штучными электродами необходимо устройство пунктов питания сварочным током для быстрого переключения сварочных проводов. Не менее важным мероприятием является применение электрододержателей для быстрой смены электродов, а также приспособлений для ускоренного поворота деталей Разработка технических мероприятий связана с внедрением новейших способов сварки или усовершенствованием сварочного оборудования и технологии сварки. Вместо V-образной разделки кромок желательно применять Х-образную. Целесообразно применять электроды с большим коэффициентом наплавки, например, электрод МР-3 имеет коэффициент наплавки 8,5 г/(Ач), а электрод ИТС-1 – 12 г/(А-ч) при

прочих равных характеристиках. Для повышения производительности РДС можно повышать сварочный ток до верхнего предела, рекомендуемого для данного диаметра электрода, можно производить сварку опиранием на чехольчик, трехфазной дугой, наклонным или лежачим электродом. При сварке двухсторонних угловых швов на постоянном токе можно сваривать одновременно с двух сторон методом «дуга в дугу»



  1. Технология автоматической сварки под флюсом


Сварку под слоем флюса производят электродной проволокой, которую подают в зону горения дуги специальным механизмом, изымаемым сварочной головкой автомата. Металл сварочной проволоки расплавляется дугой и переносится каплями в сварочную ванну. В сварочной ванне металл сварочной проволоки смешивается с расплавленным основным металлом. Токоподвод к проволоке осуществляется через мундштук, изготовляемый из меди или ее сплавов. Малый вылет электрода, отсутствие покрытия, большая скорость подачи электродной проволоки позволяют значительно увеличить силу сварочного тока по сравнению с ручной сваркой электродами тех же диаметров. Это приводит к ускорению процесса плавления сварочной проволоки, увеличению глубины противления основного металла и, как следствие, значительному повышению производительности. Коэффициент наплавки достигает в некоторых случаях 90 г/(А¬ч). Достаточно толстый слой флюса (до 60 мм) засыпаемый в зону сварки, расплавляется на 30 %. Это делает дугу закрытой (невидимой) и обеспечивает надежную защиту расплавленного металла от окружающего воздуха, стабилизирует сварочный процесс. Существенным достоинством сварки под флюсом являются незначительные потери на угар металла и его разбрызгивание, вследствие увеличения эффективной тепловой мощности дуги может быть расширен диапазон толщин деталей, свариваемых без скоса кромок. Например, при обычных режимах сварки под флюсом деталей встык без скоса кромок можно сваривать металл толщиной 15—20 мм. В этом случае увеличивается противление основного металла, и его доля в металле шва составляет 0,5—0,7. При этом значительно снижается расход электродной проволоки. При сварке угловых швов увеличенная глубина провара обеспечивает большее сечение, чем это достигается при ручной сварке с одинаковым катетом шва. Как отмечалось ранее,

флюсы влияют на устойчивость горения дуги, формирование и химический состав металла шва. Флюсы в значительной мере определяют стойкость металла шва против образования пор и кристаллизационных трещин. Требуемые механические свойства, структура металла шва и сварного соединения в целом обеспечиваются применением сочетания флюса и электродной проволоки. Размеры и форма шва при сварке под флюсом характеризуется глубиной провара, шириной шва, высотой выпуклости и т. д. Закономерности изменения формы шва обусловлены главным образом режимом сварки и практически мало зависят от типа сварного соединения. Параметры режима сварки под флюсом условно можно разбить на основные и дополнительные. К основным параметрам относят величину сварочного тока, его род и полярность, напряжение дуги, диаметр электродной проволоки и скорость сварки. При сварке под флюсом с постоянной скоростью подачи электродной проволоки часто вместо сварочного тока используют термин «скорость подачи электродной проволоки». Чем выше скорость подачи электродной проволоки, тем больше должен быть сварочный ток, чтобы расплавить проволоку, подаваемую в сварочную ванну. К дополнительным параметрам режима сварки под флюсом относят величину вылета электродной проволоки, состав и строение флюса, а также положение изделия и электрода при сварке. Глубина провара и ширина шва зависят от всех параметров режима сварки. С увеличением силы тока глубина провара увеличивается. При сварке постоянным током обратной полярности глубина провара примерно на 40—50 % больше, чем при сварке постоянным током прямой полярности. При, сварке переменным током глубина провара на 15—20 % ниже, чем при сварке постоянным током обратной полярности. Уменьшение диаметра электродной проволоки приводит к увеличению глубины провара, так как увеличивается плотность тока. При этом ширина шва уменьшается. при автоматической сварке под флюсом для получения глубины провара 5 мм при диаметре электродной проволоки 2 мм требуется сварочный ток 350 А, а при диаметре 5 мм – 500 А. На практике больше применяют малые диаметры электродной проволоки. Это позволяет применять меньшие значения сварочного тока в сочетании с высокой производительностью процесса сварки. Напряжение дуги при сварке под флюсом не оказывает существенного влияния на глубину провара. Увеличение напряжения дуги приводит к увеличению ширины шва. При этом снижается выпуклость шва, глубина противления остается почти постоянной. При необходимости увеличения толщины свариваемого металла для правильного формирования шва необходимо увеличивать силу сварочного тока и напряжение дуги При малых скоростях сварки 10—12 м/ч глубина проплавления при прочих равных условиях минимальная. При увеличении скорости сварки ширина шва заметно сокращается, выпуклость шва несколько возрастает, глубина проплавления незначительно увеличивается. При увеличении скорости сварки до 70—80 м/ч глубина проплавления и ширина шва уменьшаются, а при дальнейшем увеличении скорости сварки влияние различных факторов приводит к тому, что образуются краевые непровары – зоны несплавления На форму и размеры шва влияют не только основные параметры режима сварки, но и дополнительные. Влияние наклона электрода скажется на изменении положения дуг. По положению электрода вдоль шва различают сварку с наклоном электрода углом вперед или углом назад В первом случае существенно уменьшается глубина провара и увеличивается ширина шва. При наклоне электрода углом назад происходит некоторое увеличение глубины провара и уменьшение ширины шва, поэтому зоны несплавления могут образоваться при меньшей скорости сварки, чем при вертикальном расположении электрода. Наклон изделия по отношению к горизонтальной плоскости также оказывает влияние на формирование шва. При сварке подъем увеличивается глубина провара и уменьшается ширина шва. Если угол подъема изделия при сварке под флюсом будет более 6°, то по обе стороны шва могут образоваться подрезы. При варке на спуск глубина провара уменьшается. Изменение вылета электрода и марки флюса приводит к изменению условий выделения теплоты. Увеличение вылета электрода вызывает увеличение напряжения на дуге, уменьшение сварочного тока и глубины провара. Особенно заметно влияние вылета электрода при механизированной сварке проволокой диаметром 1,0—2,5 мм. В этом случае колебания вылета электрода в пределах 8—10 мм могут привести к резкому ухудшению формирования шва. Флюсы отличаются стабилизирующими свойствами, плотностью, газопроницаемостью в жидком состоянии и вязкостью. Повышенные стабилизирующие свойства флюсов приводят к увеличению длины и напряжения дуги, в результате чего возрастает ширина шва и уменьшается глубина провара. Аналогичный процесс формирования шва происходит при сварке с уменьшением насыпной массы флюса. Зазор между деталями, разделка кромок и вид сварного соединения не оказывают значительного влияния на форму шва. Очертание провара и общая высота шва Н остаются практически постоянными. Чем больше зазор или разделка кромок, тем меньше доля основного металла в металле шва


  1. Технология выполнения сварных соединений



При сварке под флюсом наибольшее применение получили стыковые соединения с односторонними и двухсторонними швами с разделкой и без разделки кромок, однопроходные и многопроходные. Для получения качественного сварного шва необходимо применять входные и выходные планки. Односторонняя автоматическая сварка без разделки кромок с неполным проваром (сварка на весу) должна выполняться на таком режиме, чтобы непроплавленный слой основного металла мог удерживать сварочную ванну. Если при односторонней сварке требуется обеспечить полный провар, то необходимо принять технологические меры с тем, чтобы жидкий металл не вытекал в зазор. Для предотвращения прожогов сварку производят на остающейся стальной подкладке или в замок. Сварку также можно производить на медной или флюсовой подкладке, на флюсовой подушке. В некоторых случаях предварительно проваривают корень шва механизированной сваркой

Двухсторонняя автоматическая сварка является основным методом получения высококачественных швов. В этом случае стыковое соединение сначала проваривают автоматической сваркой с одной стороны на весу так, чтобы глубина проплавления составляла чуть больше половины толщины свариваемых деталей. После кантовки (поворота) изделия сварку производят с противоположной стороны

В результате некоторых технологических трудностей не всегда удается выполнить первый проход без нарушений технологии. Для того, чтобы гарантировать качество шва при первом проходе, применяют сварку на флюсо-медных подкладках

Тавровые, угловые и нахлесточные соединения сваривают угловыми швами. Швы в «лодочку» свариваются вертикальным электродом, другие швы нижнего положения – наклонным электродом. Основная трудность при сварке «в лодочку» заключается в том, что жидкий металл протекает в зазоры. В этом случае к сборке под сварку предъявляются более жесткие требования.

Если зазор более 1,0—1,5 мм, то необходимо принимать меры, предупреждающие протекание жидкого металла (так же, как и при сварке стыковых швов).

.



  1. Технологические особенности сварки в среде защитных газов и их смесях



Применение дуговой сварки в среде защитных газов благодаря ее технологическим и экономическим преимуществам все больше возрастает. Технологическими преимуществами являются относительная простота процесса сварки и возможность применения механизированной сварки в различных пространственных положениях. Незначительный объем шлаков позволяет получить высокое качество сварных швов. Сварка в среде защитных газов применяется для соединения как различных сталей, так и цветных металлов. Для сварки в защитных газах кроме источника питания дуги требуются специальные приборы и оснастка (приспособления). Пост для сварки в среде защитного газа: 1 – баллон с газом; 2 – подогреватель; 3 – осушитель; 4 – редуктор; 5 – расходомер (ротаметр); 6 – газоэлектрический клапан; 7 – источник питания; 8 – пульт управления; 9– рабочий стол; 10 – подающий механизм; 11 – горелка

Сварка в защитных газах – это общее название разновидностей дуговой сварки, при которых через сопло горелки в зону горения дуги вдувается струя защитного газа. В качестве защитных газов применяют: аргон, гелий (инертные газы); углекислый газ, кислород, азот, водород (активные газы); смеси газов (Ar + CO2 + O2; Ar + O2; Ar + CO2 и др.). Смеси защитных газов должны удовлетворять требованиям ТУ.

Аргонокислородную смесь (Ar + 1—5 % О2) применяют при сварке малоуглеродистых и легированных сталей. В процессе сварки капельный перенос металла переходит в струйный, что позволяет увеличить производительность сварки и уменьшить разбрызгивание металла.

Смесь аргона с углекислым газом (Ar + 10—20 % СО2) также применяют при сварке малоуглеродистых и низколегированных сталей. При использовании этой смеси защитных газов устраняется пористость в сварных швах, повышается стабильность горения дуги и улучшается формирование шва.

Тройная смесь (75 % Ar + 20 % СО2 + 5 % О2) при сварке сталей плавящимся электродом обеспечивает высокую стабильность горения дуги, минимальное разбрызгивание металла, хорошее формирование шва, отсутствие пористости.

На практике используются либо баллоны с готовой смесью газов, либо баллоны с каждым газом отдельно. В последнем случае расход каждого газа регулируется отдельным редуктором и измеряется ротаметром типа РС-3.

При сварке в среде защитных газов различают следующие основные способы: сварка постоянной дугой, импульсной дугой; плавящимся электродом и неплавящимся электродом.

Наиболее широко применяется сварка в среде защитных газов плавящимся и неплавящимся электродами.

Сварка неплавящимся электродом в защитных газах – это процесс, в котором в качестве источника теплоты применяется дуга, возбуждаемая между вольфрамовым или угольным (графитовым) электродом и изделием.

Сварка постоянным током прямой полярности позволяет получать максимальное проплавление свариваемого металла.

При сварке на постоянном токе применяются источники питания с крутопадающей ввольт-амперной характеристикой:

ВДУ-305, ВДУ-504, ВДУ-505, ВДУ-601, ВСВУ-300.

В комплект сварочной аппаратуры при сварке на постоянном токе входят сварочные горелки, устройства для первоначального

возбуждения сварочной дуги, аппаратура управления сварочным циклом и газовой защиты

Для того, чтобы улучшить процесс зажигания дуги в среде защитных газов, используют специальные устройства первоначального возбуждения дуги. Это связано с тем, что защитные газы, попадая в зону горения дуги, охлаждают дуговой промежуток и дуга плохо возбуждается. Наиболее широко применяются устройства следующих марок: ОСППЗ-ЗООМ, УПД-1, ВНР-101, ОСПЗ-2М.

При сварке в среде защитных газов на переменном токе применяют устройство для стабилизации горения дуги, например, стабилизатор – возбудитель дуги ВСД-01.

Сварку можно выполнять как с присадочной проволокой, так и без присадки.

При сварке плавящимся электродом в защитных газах дуга образуется между концом непрерывно расплавляемой проволоки и изделием. Сварочная проволока подается в зону горения дуги подающим механизмом со скоростью, равной средней скорости ее плавления. Расплавленный металл электродной проволоки переходит в сварочную ванну и таким образом формируется сварной шов.

Сварка короткой дугой является естественным импульсным процессом и осуществляется с постоянной скоростью подачи сварочной проволоки. Особенностью этого процесса являются возникающие замыкания дугового промежутка с частотой 150—300 зам/с.

При сварке короткой дугой наблюдается мелкокапельный перенос электродного металла с частотой, равной частоте коротких замыканий. Это дает возможность производить сварку при меньших значениях сварочного тока, повысить стабилизацию процесса сварки и снизить потери металла на разбрызгивание.

Сварка длинной дугой – это процесс с редкими замыканиями дугового промежутка (3—10 зам/с). В зависимости от режима сварки, защитного газа и применяемых сварочных материалов наблюдаются различные способы переноса электродного металла в сварочную ванну: крупнокапельный, мелкокапельный, струйный и др.

Определенным недостатком сварки плавящимся электродом в аргоне и смеси аргона с гелием является сложность поддержания струйного процесса переноса электродного металла.

Для повышения стабильности сварки и улучшения формирования сварного шва к аргону добавляют до 5 % О2 или до 20 % СО2.


  1. Технологические особенности процесса сварки в углекислом газе


Сварку в углекислом газе (СО2) обычно выполняют на постоянном токе обратной полярности плавящимся электродом. Основными параметрами режима сварки в СО2 и его смесях являются: полярность и сила тока, напряжение дуги; диаметр, скорость подачи, вылет и наклон электрода; скорость сварки; расход и состав защитного газа. Сварочный ток и диаметр электродной проволоки выбирают в зависимости от толщины свариваемого металла и расположения шва в пространстве. Стабильный процесс сварки с хорошими технологическими характеристиками можно получить только в определенном диапазоне силы сварочного тока, который зависит от диаметра и состава Стабильный процесс сварки с хорошими технологическими характеристиками можно получить только в определенном диапазоне силы сварочного тока, который зависит от диаметра и состава электродной проволоки и рода защитного газа. Величина сварочного тока определяет глубину проплавления и производительность процесса сварки. Величину сварочного тока регулируют изменением скорости подачи сварочной проволоки. Одним из важных параметров режима сварки в СО2 является напряжение дуги. С повышением напряжения увеличивается ширина шва и улучшается его формирование. Однако увеличивается и угар полезных элементов кремния и марганца, повышается чувствительность дуги к «магнитному дутью», увеличивается разбрызгивание металла сварочной ванны. При

пониженном напряжении дуги ухудшается формирование сварочного шва. Оптимальные значения напряжения дуги зависят от величины сварочного тока, диаметра и состава электродной проволоки, а также от рода защитного газа. Другие параметры режима сварки в СО2 находятся в сложной зависимости от различных факторов, влияющих на сварочный процесс. Перед началом сварки необходимо отрегулировать расход газа и выждать 20—30 с до полного удаления воздуха из шлангов. Перед зажиганием дуги необходимо следить, чтобы вылет электрода из мундштука не превышал 20—25 мм.

Движение горелки должно осуществляться без задержки дуги на сварочной ванне, так как эта задержка вызывает усиленное разбрызгивание металла. Сварка в нижнем положении производится с наклоном горелки под углом 5—15° вперед или назад. Предпочтительнее

вести сварку углом назад, так как при этом обеспечивается более надежная защита сварочной ванны. При механизированной сварке металла малой толщины 1—2 мм поперечных колебательных движений не производят. Сварку ведут на максимальной длине дуги, с максимальной скоростью. При достаточной газовой защите избегают прожогов и обеспечивают нормальное формирование шва. Горелку ведут углом назад, при этом угол наклона составляет 30—45°.

Стыковые соединения при толщине металла 1,5—3 мм сваривают на весу. Более тонкий металл сваривают в вертикальном положении на спуск (сверху вниз), провар достигается за один проход. Сварку соединений внахлестку при толщине металла 0,8—2,0 мм чаще производят на весу и реже – на медной подкладке. При качественной сборке нахлесточных соединений представляется возможным значительно увеличить скорость сварки. Колебательные движения горелкой при сварке больших толщин те же, что и при ручной сварке. При сварке с перекрытием для уменьшения пор применяются продольные колебания горелки вдоль оси шва, что обеспечивает более полное удаление водорода из сварочной ванны.

Сварка в среде СО2 является высокопроизводительным процессом. В массовом и крупносерийном производстве работают слесари– сборщики, которые освобождают сварщика от сборочных операций. Сварочный пост в этом случае оборудуется кроме сварочной аппаратуры специальными приспособлениями для обеспечения высокой производительности сварочных работ при гарантированном качестве сварных узлов. Требования к качеству сборки и подготовки деталей под сварку в СО2 сварочной проволокой (0,8—2,5 мм) должны соответствовать существующим нормативным документам.


  1. Сварка цветных металлов



Техническая медь маркируется в зависимости от содержания в ней примесей. Сплавы на основе меди в зависимости от состава легирующих элементов относят к латуням, бронзам и медно-никелевым сплавам. При сварке технической меди и ее сплавов необходимо учитывать их специфические физико-химические свойства: высокую теплопроводность, высокий коэффициент термического расширения, высокую чувствительность к водороду, низкую стойкость швов и околошовной зоны к возникновению горячих трещин, повышенную текучесть и др.

Перед сваркой меди или ее сплавов разделку кромок и основной металл около них на ширине не менее 20 мм очищают от масла, грязи и оксидной пленки, обезжиривают растворителем или бензином. Сварочную проволоку и присадочный металл очищают травлением в водном растворе азотной, серной и соляной кислот с последующей промывкой в воде и щелочи и просушкой горячим воздухом. Для предупреждения пористости кромки детали покрывают специальными флюс—пастами (AHM15A). Медь хорошо сваривается в аргоне, гелии и азоте, а также в их смеси. Чаще применяют смесь в составе (70—80 %)Ar + (30—20 %)N2. Азот способствует увеличению проплавления меди. Из-за высокой теплопроводности меди трудно получить надежный провар. Поэтому перед сваркой кромки деталей подогревают до температуры 200—500 °С. При сварке в аргоне подогрев необходим для деталей толщиной более 4 мм, а при сварке в азоте – более 8 мм. Величину сварочного тока выбирают исходя из диаметра вольфрамового электрода, состава защитного газа (или смеси) и рода тока. Сварку можно производить как на переменном, так и на постоянном токе обратной полярности. При сварке латуней, бронз и медно-никелевых сплавов предпочтительнее использовать вольфрамовые электроды. В этом случае испарение цинка и олова из сплавов будет значительно меньше, чем при сварке плавящимися электродами. Следует учесть, что сварка вольфрамовыми электродами током обратной полярности затруднена из-за сильного нагрева электрода и очень малых допустимых токов. При сварке алюминиевых и магниевых сплавов имеются специфические трудности. Они заключаются в том, что поверхность этих сплавов покрыта тугоплавкой оксидной пленкой, которая препятствует сплавлению металла сварочной ванны с основным металлом. В процессе сварки не всегда удается полностью удалить ее из сварного шва, где она остается в виде неметаллических включений. При сварке на токе обратной полярности происходит катодная очистка свариваемых поверхностей в зоне горения дуги. Однако действием сварочного тока разрушается лишь сравнительно тонкая оксидная пленка. Толстую пленку оксида алюминия (Al2O3) перед сваркой необходимо удалять механическим или химическим путем. Очень важно удалить оксидную пленку с поверхности электродной проволоки малого диаметра из алюминиевых и магниевых сплавов. Подготовка под сварку должна осуществляться особенно тщательно, так как на поверхности оксидной пленки хорошо задерживается атмосферная влага. В процессе сварки влага разлагается и приводит к насыщению металла шва водородом и увеличению пористости металла Термически упрочняемые сплавы марок AВ, AK6, AKB обладают повышенной склонностью к образованию горячих трещин. Для уменьшения склонности к горячим трещинам этих сплавов применяют в качестве присадочного металла сварочную проволоку с содержанием (4—6 %) Si. Влияние на качество сварных соединений оказывает и выбор конструктивных элементов разделки кромок, которые определены требованиями существующих нормативных документов. Свариваемые детали собирают так, чтобы были обеспечены минимально возможные зазоры. Если сварку приходится производить без сборочно-сварочных приспособлений, то детали фиксируют с помощью прихваток. Прихватки выполняют той же проволокой, что и сварку.



  1. Технология сварки чугуна и ее особенности


Чугунами называются железоуглеродистые сплавы с содержанием углерода свыше 2,0 %.

Обычный чугун представляет собой железоуглеродистокремниевый сплав, содержащий углерода от 2,5 до 4 %, кремния от 1 до 5 % в сочетании с различными количествами марганца, серы и фосфора; иногда при этом имеются один или несколько специальных легирующих элементов вроде никеля, хрома, молибдена, ванадия, титана и пр.

Чугун является дешевым, обладающим хорошими литейными свойствами сплавом, который благодаря ряду других особых свойств нашел широкое применение в народном хозяйстве, особенно в машиностроении.

В зависимости от состояния углерода в сплаве различают два основных вида чугуна: белый и серый чугун.

Серые чугуны получили большое распространение; с их сваркой приходится встречаться главным образом при исправлении брака чугунного литья и при ремонте.

Структура чугуна, его физические и механические свойства зависят от скорости охлаждения и химического состава чугуна. При одинаковом химическом составе и прочих равных условиях высокая скорость охлаждения способствует образованию в чугуне цемента, т.е. получению белого чугуна. Замедленное охлаждение, напротив, вызывает выделение углерода в состоянии графита с получением серого чугуна.

Промежуточные скорости охлаждения дают различные переходные структуры металлической части: цементно-перлитную, перлитную, перлито-ферритную, ферритную.

Все смеси чугуна по своему влиянию на цементит делят на две группы: графитообразующие, способствующие образованию графита, и карбидообразующие, задерживающие образование графита. Рассмотрим влияние некоторых примесей. Кремний является после углерода наиболее важной примесью чугуна и относится к графитообразующим

примесям. При содержании кремния выше 4,5 % практически весь углерод выпадает в виде графита. Сера образует легкоплавкие эвтектики и является активным карбидообразователем, что увеличивает хрупкость чугуна. Поэтому содержание серы в чугуне строго ограничивается (не более 0,15 %). Марганец, как и в стали, снижает содержание серы в чугуне; при содержании в чугуне до 0,8 % действует как графитизатор, выше 1 % – как слабый карбидообразователь; дальнейшее увеличение содержания марганца усиливает его карбидообразующее действие. Фосфор придает расплавленному чугуну жидкотекучесть и образует сложную фосфидную эвтектику, повышающую твердость и хрупкость чугуна. Твердость является важной характеристикой чугуна; она зависит от структуры, легирующих примесей и размера графитных включений. Наименьшую имеют ферритные чугуны, в которых почти весь углерод находится в свободном состоянии; перлитный чугун с пластинчатым графитом имеет 220—240 НВ, а структура цементита 750 HA. Чем больше размеры графитных включений, тем меньше твердость чугуна. При выборе способа сварки чугуна необходимо учитывать, что: высокая его хрупкость при неравномерном нагреве и охлаждении может привести к появлению трещин в процессе сварки; ускоренное охлаждение приводит к образованию отбеленной прослойки в околошовной зоне и затрудняет его дальнейшую механическую обработку; сильное газообразование в жидкой ванне может привести к пористости сварных швов; высокая жидкотекучесть чугуна вызывает необходимость в ряде случаев к подформовке. Чугунные детали, работающие длительное время при высоких температурах, почти не поддаются сварке. Это происходит в результате того, что под действием высоких температур (300—400 °С и выше) углерод и кремний окисляются, и чугун становится очень хрупким. Чугун с окисленным углеродом и кремнием называют горелым. Так же плохо свариваются чугунные детали, работающие длительное время в соприкосновении с маслом и керосином. В таких случаях поверхность чугуна как бы пропитывается маслом и керосином, которые при сварке сгорают и образуют газы, способствующие появлению

сплошной пористости в сварном шве. Различают два способа сварки чугуна. Холодная сварка чугуна – это сварка без предварительного нагрева изделия. Горячая сварка чугуна – это такой способ, при котором осуществляется предварительный и сопутствующий нагрев изделия до 600— 700 °С с последующим медленным охлаждением. Такой процесс уменьшает скорость охлаждения металла сварочной ванны и околошовной зоны, что обеспечивает полную графитизацию металла шва и отсутствие отбела в околошовной зоне, а также исключает возможность появления сварочных напряжений. Подогрев чугунного изделия до 250—400 °С для уменьшения сварочных напряжений и скорости охлаждения с целью получения более пластичной структуры скорости охлаждения с целью получения более пластичной структуры металлической основы чугуна часто называют полугорячей сваркой. Способ холодной сварки требует меньше затрат. Кроме того, при нем имеется возможность варьировать в больших пределах химический состав металла шва. Но при наложении валика на холодную поверхность чугуна вследствие быстрого отвода теплоты в околошовной зоне образуются отбеленные участки, а металл шва также может получиться твердым и хрупким. Превращения в околошовной зоне при холодной сварке чугуна определяются химическим составом, исходной структурой свариваемого чугуна и распределением температур в поперечном сечении соединения. Для рассмотрения структурных превращений в околошовной зоне воспользуемся тройной диаграммой состояния Fe—C—Si, связав ее с участками зоны термического влияния свариваемого



  1. Основные виды газопламенной обработки. Сущность газовой сварки


Сущность процесса газовой сварки заключается в том, что свариваемый и присадочный металлы расплавляются за счет тепла пламени горелки, получающегося при сгорании какого-либо горючего газа в смеси с кислородом.

Наиболее распространенным газом является ацетилен. В процессе сварки металл соприкасается с газами пламени, а вне пламени – с окружающей средой, обычно с воздухом. В результате металл подвергается изменениям, характер которых зависит от свойств металла, способа и режима сварки. Наибольшим изменениям подвергается металл, расплавляющийся в процессе сварки. При этом изменяется содержание примесей и легирующих добавок в металле. Одновременно может происходить обогащение его кислородом, в некоторых случаях и водородом, азотом, углеродом. Одним из наиболее распространенных процессов, происходящих при взаимодействии пламени с металлом, является окисление.

При сварке сталей в металле сварочной ванны образуется закись железа FeO, которая реагирует с кремнием и марганцем внутри сварочной ванны; вредные примеси выводятся в шлак либо удаляются в виде газов. Для предотвращения окисления кромок металла и извлечения из жидкого металла окислов и неметаллических включений применяются флюсы. Расплавленные флюсы в основном нерастворимы в металле и образуют на поверхности металла пленку шлака. Шлак предохраняет металл от воздействия газов пламени и атмосферных газов.

В процессе газовой сварки, кроме расплавления металла сварочной ванны, происходит нагрев основного и свариваемого металла до достаточно высоких температур, приближающихся к температуре плавления на границе раздела со сварочной ванной. Поэтому при сварке одновременно происходит ряд сложных процессов, связанных с расплавлением металла, его взаимодействием с газами и шлаками, последующей кристаллизацией, а также с нагревом и охлаждением металла в твердом состоянии как в пределах шва, так и в основном металле и в зоне термического влияния. Расплавленный металл сварочной ванны представляет сплав основного и присадочного металлов. В результате взаимодействия газов пламени и флюсов он изменяет свой состав. По мере удаления пламени горелки металл кристаллизуется в остывающей части ванны. Закристаллизовавшийся металл сварочной ванны образует металл шва. Шов имеет структуру литого металла с вытянутыми укрупненными кристаллами, направленными к центру шва. Наибольшее применение в промышленности из множества видов газопламенной обработки имеют обработки имеют сварка, пайка и кислородная резка.


Для газовой сварки необходимы следующие сварочные материалы, оборудование, приспособления и специальные средства для безопасной работы: газы: кислород и горючий газ (ацетилен или его заменители); присадочная проволока для сварки или наплавки; оборудование и аппаратура: кислородные баллоны для хранения запаса кислорода, подаваемого из баллонов в горелку или резак; кислородные редукторы для понижения давления кислорода; ацетиленовые генераторы для получения ацетилена из карбида кальция или ацетиленовые баллоны, в которых ацетилен находится в растворенном состоянии; ацетиленовые редукторы для понижения давления ацетилена, отбираемого из баллона; специальные баллоны или емкости для сжиженных газов, бачки с насосом для создания в них давления; сварочные, наплавочные, закалочные и другие горелки с набором наконечников для нагрева металла различной толщины; кислородные и другие резаки с комплектом мундштуков и приспособлений для резки и т. д.; резиновые рукава (шланги) для подачи кислорода и любого горючего газа в горелку или резак; принадлежности для сварки и резки: очки с затемненными стеклами (светофильтры) для защиты глаз от яркости сварочного пламени, молоток, набор ключей для накидных гаек горелки и резака, стальные щетки для очистки сварного шва и кромок деталей перед сваркой; сварочный стол и приспособление для сборки и фиксации деталей при прихватке и сварке; флюсы или сварочные порошки. Для газосварщика рабочим местом является сварочный пост в комплексе с соответствующей аппаратурой и приспособлениями.

сущность



  1. Особенности газовой сварки различных металлов и сплавов



Низкоуглеродистые стали можно сваривать любым способом газовой сварки. Пламя горелки при сварке стали должно быть нормальным, мощностью 100—130 дм3(л)/ч ацетилена на 1 мм толщины металла при левой сварке и 120—150дм3(л)/ч – при правой сварке.

При газовой сварке толщиной до 6 мм в качестве горючих газов применяют: ацетилен, пропан-бутановую смесь или природный газ (ограниченное применение). Сварочная проволока выбирается в зависимости от марки стали и должна удовлетворять требованиям существующих нормативных документов При сварке пламенем большой мощности во избежание перегрева металла уменьшают угол наклона мундштука к основному металлу, а пламя преимущественно направляют на конец проволоки.

При сварке следует стремиться к одновременному расплавлению кромок шва и конца проволоки, чтобы капли расплавленного присадочного металла не попадали на недостаточно нагретую кромку основного металла. С целью уплотнения и повышения пластинности шва можно применять проковку. При сварке листов большой толщины, а также сварке ответственных изделий применяют термическую обработку сварного шва или изделия в целом.

При сварке сталей важное значение имеет чистота поверхности кромок, так как загрязнения вызывают в шве поры, непровар, шлаковые включения.

Прихватку деталей под газовую сварку необходимо производить той же присадочной проволокой и тем же наконечником горелки, каким выполняется основная сварка. Расположение прихваток, их количество, длину устанавливают согласно существующим стандартам. Прихватки необходимо производить в местах наименьшей концентрации напряжений. Не рекомендуется производить прихватку в острых углах, в местах резких переходов, на окружностях с малым радиусом.

Удовлетворительно свариваются газовой сваркой низколегированные строительные стали 10ХСНД и 15ХСНД. Данные о мощности наконечника и других необходимых параметрах режима сварки этих сталей представлены в табл. 65, 66 и 67. Для улучшения качества шва целесообразно проковать шов при температуре 800—850 °С с последующей нормализацией.

При ремонте паровых котлов и трубопроводов применяют газовую сварку низколегированных молибденовых теплоустойчивых сталей. Мощность при сварке этих сталей выбирают из расчета 100 дм3/ч ацетилена на 1 мм толщины металла. Сварочную проволоку применяют следующих марок: Св08ХНМ, Св10НМ, Св18ХМА, Св10ХМ. Сварку необходимо производить небольшими участками длиной 15—25 мм, поддерживая весь свариваемый участок нагретым до светло-красного каления.

Широко применяют низколегированные хромокремнемарганцовые стали (хромансили) для изготовления нагревающих устройств и трубопроводов, работающих в области невысоких температур. При газовой сварке этих сталей выгорают легирующие элементы, что вызывает появление в шве включений окислов и шлаков. Для предупреждения этого явления сварку ведут нормальным пламенем, мощностью 75—100 дм3/ч ацетилена на 1 мм толщины металла. Рекомендуется применять низкоуглеродистую сварочную проволоку Св08 и Св08А или легированную Св18ХГСА и Св18ХМА. Сварку производят только в один слой. Большое значение для качества шва при сварке этих сталей имеют тщательная очистка и подгонка кромок, а также точное соблюдение зазора между ними, который, должен быть одинаковым по всей длине. Эти стали при резком охлаждении склонны к образованию трещин, поэтому горелку необходимо отводить медленно, подогревая конечный участок сварки. Сварку необходимо производить по возможности быстро, без перерывов и не останавливаясь.




  1. Сущность и основные условия резки


Кислородная резка стали основана на свойстве железа гореть в струе чистого кислорода, будучи нагретым до температуры, близкой к температуре плавления. Температура загорания железа в кислороде зависит от состояния, в котором оно находится. Например, железный порошок загорается при 315 °С, тонкое полосовое и листовое железо – при 930 °С, а поверхность крупного куска стали – при 1200— 1300 °С. Горение железа происходит с выделением тепла и резка может поддерживаться за счет теплоты сгорания железа. При резке нагревание производят газокислородным пламенем. В качестве горючих газов при резке используют ацетилен, пропан-бутан, пиролизный, природный коксовый, городской газ, а также керосин. Кроме подогрева металла до температуры горения в кислороде, подогревающее пламя выполняет и некоторые дополнительные функции: подогревает переднюю кромку реза впереди струи режущего кислорода до температуры воспламенения, что обеспечивает непрерывность резки; вводит в зону реакции окисления дополнительное тепло; создает защитную оболочку вокруг режущей струи кислорода. Мощность пламени зависит от толщины и состава разрезаемой стали и температуры металла перед резкой. Металл нагревают на узком участке в начале реза, а затем на нагретое место направляют струю режущего кислорода, одновременно передвигая резак по размеченной линии реза. Металл сгорает по всей толщине листа, в котором образуется узкая щель. Интенсивное горение железа в кислороде происходит только в слоях, приграничных с поверхностью режущей струи кислорода, который проникает в металл на очень малую глубину. Чтобы ускорить процесс резки, желательно применить подогрев. Для заготовительной резки стали применяют чистый кислород (98,5—99,5 %). Скорость резки, толщина металла, расход ацетилена в подогревающем пламени и эффективная мощность пламени связаны между собой определенной зависимостью. Для процесса резки металла кислородом необходимы следующие условия: температура горения металла в кислороде должна быть ниже температуры плавления, иначе металл будет плавиться и переходить в жидкое состояние до того, как начнется его горение в кислороде; образующиеся окислы металла должны плавиться при температуре более низкой, чем температура горения металла, и не быть слишком вязкими (в противном случае необходимо применять флюсы); количество тепла, выделяющееся при сгорании металла в кислороде, должно быть достаточным, чтобы обеспечить поддержание процесса резки; теплопроводность металла не должна быть высокой, иначе процесс резки может прерваться из-за интенсивного теплоотвода. Разрезаемость сталей при их резке ацетилено-кислородным пламенем условно подразделяется на 4 группы


  1. Резаки


Резаки можно классифицировать по следующим признакам: по виду резки – для разделительной, поверхностной, кислородно-флюсовой; по назначению – для ручной резки, механизированной резки, специальные; по роду горючего – для ацетилена, газов-заменителей, жидких горючих; по принципу действия – инжекторные, безынжекторные; по давлению кислорода – высокого, низкого; по конструкции мундштуков – щелевые, многосопловые. Наибольшее применение имеют универсальные инжекторные ручные резаки для разделительной резки со щелевыми мундштуками. Конструкция резака состоит из рукоятки, газоподводящих трубок, корпуса с вентилями и головкой, в которую ввертываются мундштуки. Применяются два основных типа мундштуков: с кольцевым подогревательным пламенем или щелевые многосопловые. Щелевые мундштуки состоят из внутреннего и наружного мундштуков, которые ввертывают на резьбе в головку резака или присоединяют к ней накидной гайкой. По кольцевому зазору между наружным и внутренним мундштуками поступает горючая смесь подогревательного пламени. По центральному каналу внутреннего мундштука подается струя кислорода, в которой сгорает разрезаемый металл. Многосопловые мундштуки изготавливают цельными из одного куска металла или составными. Они имеют ряд каналов (сопел) диаметром 0,7—1,0 мм, расположены вокруг центрального канала для подачи режущей струи кислорода и крепятся к головке резака накидной гайкой. Многосопловые мундштуки применяют при работе на газах-заменителях: природном, нефтяном, коксовом и других газах, обладающих низкими скоростями горения. Эти мундштуки более трудоемки в изготовлении, чем щелевые, поэтому щелевые мундштуки нашли более широкое применение. В современных конструкциях резаков применяют самоцентрирующиеся щелевые мундштуки. Резаки, как правило, при резке устанавливают на опорную каретку с двумя роликами. Благодаря этому выдерживается постоянным расстояние от конца мундштука до поверхности металла и отпадает необходимость держать резак на весу во время работы. Давление

кислорода устанавливается в пределах 0,3—1,4 МПа (3—14 кгс/см2), давление ацетилена – в пределах 0,2—1 МПа (2—10 кгс/см2). Безынжекторные резаки объективно лучше по своим технологическим качествам, так как сопла их мундштуков не забиваются каплями расплавленного металла и шлака при резке. Перед началом работы следует проверить, плотны ли все соединения резака и есть ли разрежение в ацетиленовом канале инжекторного резака. При зажигании подогревающего пламени слегка открывают вентиль подогревающего кислорода, затем открывают вентиль ацетилена. Когда в ацетиленовом канале создается разрежение, зажигают горючую смесь у выходного отверстия мундштука и регулируют пламя кислородным и ацетиленовым вентилями. Ядро должно иметь правильную, очерченную форму. Если при зажигании смеси и пуске режущей струи кислорода последняя находится не в центре, то это указывает на неправильную посадку внутреннего мундштука в головке; в этом случае необходимо выправить мундштук. Причиной неправильной формы подогревающего пламени являются также заусенцы, царапины, забоины на кромках мундштуков. Эти дефекты следует исправлять перешлифовкой кромок мундштуков и калибровкой каналов. Если резак при зажигании смеси начинает давать хлопки, значит, имеется пропуск режущего кислорода в месте посадки внутреннего мундштука в головку. В этом случае необходимо притереть место посадки. Для определения плотности соединений в головку ввертывают мундштук с заглушенным выходным отверстием для кислорода, резак погружают в воду и в каналы подают кислород или воздух под давлением 1 МПа (10 кгс/см2) через шланг, надетый на кислородный ниппель. Наличие пропусков проявится при выделении пузырьков. Для раскроя металла и правки конструкций в условиях монтажа применяются керосинорезы, так как они менее взрывоопасны.

Керосин подается в резак под давлением 0,05—0,2 МПа (0,5—2 кгс/см2) из бачка емкостью 5 дм3, снабженного ручным воздушным насосом, манометром и запорным вентилем.



  1. Правила обращения с оборудованием и аппаратурой


При работе с ацетиленовыми генераторами прежде всего следует учитывать взрывоопасность смеси ацетилена с воздухом. Исходя из этого условия необходимо строго соблюдать следующие требования безопасности. К обслуживанию ацетиленовых генераторов допускаются лица, достигшие 18¬летнего возраста, знающие устройство и работу генератора. Генератор предназначен для работы на открытом воздухе. Для временных сварочных работ допускается устанавливать аппарат в жилых и производственных помещениях объемом не менее 300 м3. Генератор необходимо устанавливать на расстоянии не менее 10 м от места работы горелки или резака, а также от любого другого источника пламени или нагреваемых приборов. Для вскрытия барабанов с карбидом кальция нельзя применять обычные слесарные инструменты (молоток, зубило, ножи), так как при работе с ними может возникнуть искра. Допускается пользоваться омедненным инструментом или изготовленным из сплавов меди. Барабан разрешается вскрывать на открытом воздухе под навесом. Для хранения карбида кальция следует пользоваться герметически закрывающимися емкостями.

Запрещается:

загружать карбид кальция в мокрые ящики или корзины; применять карбид тех грануляций, которые не указаны в эксплуатационной характеристике генератора; пользоваться удлиненными рукоятками винта для увеличения усилия при уплотнении крышки генератора; работать от генераторов без предохранительных затворов. При работе генераторов необходимо постоянно следить за тем, чтобы не было утечки газа из кранов, пробок и других соединений. Запрещается оставлять работающий генератор без надзора. Прежде чем подойти к работающему генератору, необходимо убедиться, не тлеют ли рукавицы или спецодежда. При неисправной работе генератора запрещается открывать крышку и вынимать корзину с горячим, неразложившимся карбидом. Это можно будет сделать только после

остывания генератора по истечении 2—3 ч и выпуска газа через горелку или резак. После окончания работы генератор необходимо разгрузить Очистку корзины и корпуса от ила необходимо производить только скребками из цветных металлов или сплавов. Карбидный ил необходимо выносить в специально отведенные для него ямы или специальные ящики. Генератор после очистки должен быть установлен в такое место, чтобы исключить доступ к нему посторонних лиц. При выполнении газосварочных работ приходится иметь дело с баллонами со сжатыми, сжиженными и растворенными газами. В процессе эксплуатации этих баллонов во избежание взрывов следует соблюдать крайнюю осторожность. Наиболее частыми причинами взрывов баллонов являются механические удары. Опасность взрыва возникает также при нагреве баллонов до высокой температуры, вследствие того что внутри баллонов возрастает давление газа. При эксплуатации баллонов необходимо соблюдать следующие меры безопасности:

1. Не допускать падения баллонов, а также ударов их друг о друга или с различными предметами.

2. Тщательно закреплять баллоны на рабочем месте, чтобы они случайно не упали.

3. Хранить баллоны следует в вертикальном положении, с плотно навинченными предохранительными колпаками, вентилями вверх. Для хранения баллонов должны быть оборудованы специальные гнезда или клетки с барьерами, которые предохраняют баллоны от падения.

4. Устанавливать баллоны следует на расстоянии не менее 5 м от очагов с открытым огнем. В летнее время их необходимо защищать от нагрева солнечными лучами.

5. Перемещать баллоны на небольшие расстояния разрешается путем перекатывания в слегка наклоненном положении, переносить баллоны на руках или на плечах запрещается.

6. Перемещать баллоны из одного помещения в другое только на специальных ручных тележках (рис. 110) или на специальных носилках (рис. 111).

7. Отбор газа из баллона следует производить через редуктор, предназначенный для данного газа и окрашенный в соответствующий цвет.

8. Перед присоединением редуктора необходимо продуть штуцер вентиля, на короткое время открыв баллон поворотом маховичка на 0,5 оборота; при этом нельзя находиться напротив штуцера вентиля (рис. 112), а также пробовать струю газа рукой.

9. Открывать вентиль баллона рекомендуется плавно, без рывков. Если открыть вентиль от руки не удается, следует пользоваться специальным ключом. Неоткрывшиеся баллоны следует сдавать на склад, предварительно прикрепив к ним этикетки с надписью «Неисправен». Закрывать вентиль при помощи ключа не рекомендуется.

10. Если редукторы и вентили баллонов замерзли, их следует отогревать смоченной в горячей воде ветошью. Открытым пламенем отогревать редукторы и вентили категорически запрещается.

11. Особая осторожность требуется при эксплуатации кислородных баллонов. Необходимо защищать их от загрязнений и всегда помнить, что в струе кислорода горят многие вещества (включая некоторые металлы), а легковоспламеняющиеся жидкости, масла, жиры, нефть и т. д. горят или воспламеняются со взрывом, поэтому спецодежда сварщика или помощника должна быть чистой, на руках и на инструменте не должно быть даже следов масел и жиров.

12. При воспламенении кислородного вентиля или какой-либо части заградительного приспособления необходимо немедленно перекрыть кислородный вентиль, после чего тушить огонь при помощи огнетушителя и песка.

В процессе работы с аппаратурой для газовой сварки необходимо соблюдать следующие меры безопасности:

1. Перед началом работы сварочная горелка или резак должны быть проверены на исправность работы и герметичность.

2. При зажигании пламени необходимо сначала открывать кислородный вентиль, а затем – ацетиленовый.

3. При гашении пламени необходимо первым закрывать ацетиленовый вентиль, а затем кислородный.

4. Шланги следует предохранять от попадания на них искр, огня, раскаленных или тяжелых предметов. Нельзя допускать перегибов и загрязнений шлангов масляными или жирными веществами. Сварку и резку необходимо производить обязательно в специальных очках с защитными светофильтрами, выбираемыми в зависимости от мощности пламени. Для газовой сварки используются I очки шоферского типа с защитными светофильтрами марок Г-1; Г-2; Г-3. Все сварочные работы следует производить только в спецодежде.

При работе с керосинорезом необходимо соблюдать ряд следующих требований безопасности:

1. Давление в бачке с керосином не должно быть выше давления кислорода после редуктора.

2. При перерывах в работе необходимо плотно закрывать вентиль подачи керосина в испаритель и вентиль для подогревающего кислорода, а резак керосинореза класть головкой вниз.

3. Для защиты кислородного шланга от обратных ударов пламени требуется применять предохранительный клапан, который устанавливается на кислородном ниппеле керосинореза.

4. Перед подкачкой воздуха в бачок следует открыть вентиль на пол-оборота. При этом вентили резака на линиях керосина и кислорода должны быть перекрыты, а инжектор керосинореза открыт. Зажигать пламя следует только убедившись в исправности резака. Сначала пускается горючее, затем подогревающий кислород, зажигается пламя; только после прогрева испарителя пускают режущий кислород.

5. Запрещается работать резаком с перегретым испарителем.

6. При прекращении работы сначала необходимо закрыть вентиль режущего кислорода, затем вентиль горючего газа, затем вентиль подогревающего кислорода. И только после этого открывают спускной кран на бачке для снижения давления в нем до атмосферного.

7. Для устранения хлопков пламени необходимо увеличить поступление в резак горючего и кислорода или прочистить мундштук, прекратив работу.

8. При обратном ударе пламени необходимо немедленно закрыть сначала вентиль подачи кислорода на резаке, затем перекрыть подачу кислорода от баллона, после чего закрыть вентиль подачи горючего на резаке и бачке.

9. При засорении сопла необходимо прекратить работу, вывернуть сопло из головки резака и прочистить канал медной проволокой.

10. Необходимо прочищать испаритель резака не реже 1 раза в неделю, промывая асбестовую оплетку в горячей воде.

11. Применять керосин как горючее целесообразно при окружающей температуре не ниже —15 °С и резке стали толщиной не более 200 мм. При более низких температурах окружающего воздуха и необходимости резать сталь большей толщины в качестве горючего можно использовать бензин А-66, соблюдая повышенные меры предосторожности. Резак в этом случае должен иметь мундштуки, рассчитанные для работы на бензине. Следует помнить, что применение этилированного бензина запрещается.

12. Запрещается подходить с зажженным резаком к бачку с горючим.

13. Токоведущие провода следует располагать не ближе 3 м от места резки и открытого огня.

Только до конца зимы! Скидка 60% для педагогов на ДИПЛОМЫ от Столичного учебного центра!

Курсы профессиональной переподготовки и повышения квалификации от 1 400 руб.
Для выбора курса воспользуйтесь удобным поиском на сайте KURSY.ORG


Вы получите официальный Диплом или Удостоверение установленного образца в соответствии с требованиями государства (образовательная Лицензия № 038767 выдана ООО "Столичный учебный центр" Департаментом образования города МОСКВЫ).

Московские документы для аттестации: KURSY.ORG


Общая информация

Номер материала: ДБ-270488

Похожие материалы



Очень низкие цены на курсы переподготовки от Московского учебного центра для педагогов

Специально для учителей, воспитателей и других работников системы образования действуют 60% скидки (только до конца зимы) при обучении на курсах профессиональной переподготовки (124 курса на выбор).

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца с присвоением квалификации (признаётся при прохождении аттестации по всей России).

Подайте заявку на интересующий Вас курс сейчас: KURSY.ORG