Инфоурок Геометрия ПрезентацииПрезентация по теме "Основные понятия стереометрии(1 урок)"-10 класс

Презентация по теме "Основные понятия стереометрии(1 урок)"-10 класс

Скачать материал
Скачать материал

Описание презентации по отдельным слайдам:

  • СТЕРЕОМЕТРИЯ1 урок

    1 слайд

    СТЕРЕОМЕТРИЯ
    1 урок

  • ПЛАНИМЕТРИЯСТЕРЕОМЕТРИЯГЕОМЕТРИЯ на плоскостиГЕОМЕТРИЯ в пространстве«планиме...

    2 слайд

    ПЛАНИМЕТРИЯ
    СТЕРЕОМЕТРИЯ
    ГЕОМЕТРИЯ на плоскости
    ГЕОМЕТРИЯ в пространстве
    «планиметрия» – наименование смешанного происхождения: от греч. metreo  – измерять
    и лат. planum – плоская поверхность (плоскость)
    «стереометрия» – от греч. stereos – пространственный (stereon – объем).
    ГЕОМЕТРИЯ

  • Изучая СТЕРЕОМЕТРИЮ Мы проведем систематическое рассмотрениесвойств геометри...

    3 слайд

    Изучая СТЕРЕОМЕТРИЮ
    Мы проведем систематическое рассмотрение
    свойств геометрических тел в пространстве.
    Освоим различные способы вычисления практически важных геометрических величин.
    При этом мы будем развивать пространственное воображение и логическое мышление

  • ГЕОМЕТРИЯ возникла из практических задач людей;
ГЕОМЕТРИЯ лежит в основе всей...

    4 слайд

    ГЕОМЕТРИЯ возникла из практических задач людей;
    ГЕОМЕТРИЯ лежит в основе всей техники и большинства изобретений человечества;
    ГЕОМЕТРИЯ нужна

    технику,
    инженеру,
    рабочему,
    архитектору,
    модельеру …
    Мы знаем, что

  • Интуитивное, живое пространственное воображение в сочетании со строгой логико...

    5 слайд

    Интуитивное, живое пространственное воображение в сочетании со строгой логикой мышления — это ключ к изучению стереометрии
    ВЫВОД:
    «Мой карандаш, бывает еще остроумней моей головы»

    Леонард Эйлер (1707—1783).

  • Учебный материал Что будем изучатьАксиомы стереометрииПараллельность прямых...

    6 слайд

    Учебный материал

    Что будем изучать
    Аксиомы стереометрии
    Параллельность прямых и плоскостей
    Перпендикулярность прямых и плоскостей
    Векторы в пространстве

  • Основные понятия стереометрии точка,
прямая,
плоскость,АТМm

    7 слайд

    Основные понятия стереометрии
    точка,
    прямая,
    плоскость,
    А
    Т
    М
    m

  • Прочти чертежAС

    8 слайд

    Прочти чертеж
    A
    С

  • Прочти чертежBcba

    9 слайд

    Прочти чертеж
    B
    c
    b
    a

  • Прочти чертеж

    10 слайд

    Прочти чертеж

  • Аксиомы стереометрииСлово «аксиома» греческого происхождения и в переводе озн...

    11 слайд

    Аксиомы стереометрии
    Слово «аксиома» греческого происхождения и в переводе означает истинное, исходное положение теории.

    Система аксиом стереометрии дает описание свойств пространства и основных его элементов

    Понятия «точка», «прямая», «плоскость», «расстояние» принимаются без определений: их описание и свойства содержатся в аксиомах

  • Аксиомы стереометрииА-1Какова бы ни была плоскость, существуют точки в простр...

    12 слайд

    Аксиомы стереометрии
    А-1
    Какова бы ни была плоскость, существуют точки в пространстве, принадлежащие этой плоскости, и точки, не принадлежащие ей.
    Р
    К
    С

    А • В •

  • Аксиомы стереометрииА-2Если две точки прямой лежат в плоскости, то все точки...

    13 слайд

    Аксиомы стереометрии
    А-2
    Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости.

    С
    М
    m
    М, C  
    m  
    М, C  m,
    Если
    то

  • Аксиомы стереометрииА-3Если две плоскости имеют общую точку, то они имеют общ...

    14 слайд

    Аксиомы стереометрии
    А-3
    Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.


    М
    m
    М  , М  , М  m

    m  , m  
       = m

  • СЛЕДСТВИЯ ИЗ АКСИОМТ-1Через любую прямую и не принадлежащую ей точку можно пр...

    15 слайд

    СЛЕДСТВИЯ ИЗ АКСИОМ
    Т-1
    Через любую прямую и не принадлежащую ей точку можно провести плоскость, и притом только одну.

    m
    м
    А
    В
    Дано: Мm
    Так как Мm, то точки А, В и M не принадлежат одной прямой.
    По А-1 через точки А, В и M проходит только одна плоскость — плоскость (ABM), Обозначим её . Прямая m имеет с ней две общие точки — точки A и B, следовательно, по аксиоме А-2 эта прямая лежит в плоскости ..
    Таким образом, плоскость  проходит через прямую m и точку M и является искомой.

    Докажем, что другой плоскости, проходящей через прямую m и точку M, не существует. Предположим, что есть другая плоскость — , проходящая через прямую m и точку M. Тогда плоскости  и  проходят через точки А, В и M, не принадлежащие одной прямой, а значит, совпадают. Следовательно, плоскость  единственна.

    Теорема доказана
    Доказательство
    Пусть точки A, B  m.

  • СЛЕДСТВИЯ ИЗ АКСИОМТ-2Через любые две пересекающиеся прямые  можно провести п...

    16 слайд

    СЛЕДСТВИЯ ИЗ АКСИОМ
    Т-2
    Через любые две пересекающиеся прямые можно провести плоскость, и притом только одну.

    N
    м
    m
    n
    Дано: m  n = M
    Доказательство
    Отметим на прямой m произвольную точку N, отличную от М.
    Рассмотрим плоскость  =(n, N). Так как M  и N, то по А-2 m  . Значит обе прямые m, n лежат в плоскости  и следовательно , является искомой
    Докажем единственность плоскости . Допустим, что есть другая, отличная от плоскости  и проходящая через прямые m и n, плоскость .
    Так как плоскость  проходит через прямую n и не принадлежащую ей точку N, то по T-1 она совпадает с плоскостью . Единственность плоскости  доказана.
    Теорема доказана

  • По трем точкам, не лежащим  на одной прямой
По прямой и точке, не лежащей на...

    17 слайд

    По трем точкам, не лежащим на одной прямой
    По прямой и точке, не лежащей на этой прямой
    По двум пересекающимся прямым
    ВЫВОД
    Как в пространстве можно однозначно задать плоскость?

  • Любые три точки лежат в одной плоскости.
Любые четыре точки лежат в одной пло...

    18 слайд

    Любые три точки лежат в одной плоскости.
    Любые четыре точки лежат в одной плоскости.
    Любые четыре точки не лежат в одной плоскости.
    Через любые три точки проходит плоскость и при том только одна.
    Если прямая пересекает 2 стороны треугольника, то она лежит в плоскости треугольника.
    Если прямая проходит через вершину треугольника, то она лежит в плоскости треугольника.
    Если прямые не пересекаются, то они параллельны.
    Если плоскости не пересекаются, то они параллельны.

    В стереометрии мы будем рассматривать ситуации, задающие различные расположения в пространстве основных фигур относительно друг друга
    Определите: верно, ли суждение?
    ДА
    ДА
    ДА
    НЕТ
    НЕТ
    НЕТ
    НЕТ
    НЕТ

  • Сколько существует способов задания плоскости?
Сколько плоскостей можно прове...

    19 слайд

    Сколько существует способов задания плоскости?
    Сколько плоскостей можно провести через выделенные элементы?

    ОТВЕТЬТЕ НА ВОПРОСЫ
    а)
    б)
    в)
    г)
    д)
    е)

  • « СЧИТАЙ НЕСЧАСТНЫМ ТОТ ДЕНЬ ИЛИ ЧАС, В КОТОРЫЙ ТЫ НЕ УСВОИЛ НИЧЕГО НОВОГО И...

    20 слайд

    « СЧИТАЙ НЕСЧАСТНЫМ ТОТ ДЕНЬ ИЛИ ЧАС, В КОТОРЫЙ ТЫ НЕ УСВОИЛ НИЧЕГО НОВОГО И НИЧЕГО НЕ ПРИБАВИЛ К СВОЕМУ ОБРАЗОВАНИЮ.»

    Я. А. КОМЕНСКИЙ.

  • СПАСИБО ЗА УРОК!

    21 слайд

    СПАСИБО ЗА УРОК!

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 184 802 материала в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 21.04.2016 3531
    • PPTX 558 кбайт
    • 240 скачиваний
    • Рейтинг: 2 из 5
    • Оцените материал:
  • Настоящий материал опубликован пользователем Парамонова Ольга Владимировна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Парамонова Ольга Владимировна
    Парамонова Ольга Владимировна
    • На сайте: 7 лет и 5 месяцев
    • Подписчики: 0
    • Всего просмотров: 14479
    • Всего материалов: 9

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой