Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Презентации / Презентация по теме последовательности "спираль Фибоначи"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Презентация по теме последовательности "спираль Фибоначи"

библиотека
материалов
Последовательность Фибоначчи
Кто такой Фибоначчи? Леонардо Фибоначчи итальянский математик (1180-1240). Ро...
Числа Фибоначчи. 1 1 2 3 5 8 13 21 34 и т.д. Свойство: Каждое следующее число...
Прямоугольник Фибоначчи. Прямоугольник с шириной и высотой, равными двум сосе...
Геометрическое доказательство для суммы квадратов первых n чисел Фибоначчи
Спирали Фибоначчи в природе.
Тысячелетник.  Складывая его старые и новые ветви можно увидеть последователь...
Цветы. Если пересчитать лепестки некоторых наиболее распространенных цветов,...
Ураган. Ураган закручивается спиралью.
Морские раковины.  Фибоначчи можно увидеть даже в самых обычных морских раков...
Спираль фибоначи в растительном мире
Пирамиды.  В отличие от других египетских пирамид это не гробница, а скорее н...
Галактики.  Спирали галактик сформированы абсолютно по принципу Фибоначчи.
Пропорции Золотого сечения в разных сферах жизни.
Пропорции человеческого тела.
Парфенон.
Основная идея. 	Оказывается, закономерность явлений природы, строение и много...
17 1

Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Описание презентации по отдельным слайдам:

№ слайда 1 Последовательность Фибоначчи
Описание слайда:

Последовательность Фибоначчи

№ слайда 2 Кто такой Фибоначчи? Леонардо Фибоначчи итальянский математик (1180-1240). Ро
Описание слайда:

Кто такой Фибоначчи? Леонардо Фибоначчи итальянский математик (1180-1240). Родился в Пизе. Его алгебра одна из первых появившихся в Европе. Он долгое время жил на Востоке, где и познакомился с математикой арабов, в том числе, с алгеброй Мохаммеда бен- Музы, который, в свою очередь, почерпал свои знания из индийской математической литературы и более всего из сочинений Брахмагупты. Леонардо находил уже связь между алгеброй и геометрией.

№ слайда 3 Числа Фибоначчи. 1 1 2 3 5 8 13 21 34 и т.д. Свойство: Каждое следующее число
Описание слайда:

Числа Фибоначчи. 1 1 2 3 5 8 13 21 34 и т.д. Свойство: Каждое следующее число, начиная с третьего, равно сумме двух предыдущих.

№ слайда 4 Прямоугольник Фибоначчи. Прямоугольник с шириной и высотой, равными двум сосе
Описание слайда:

Прямоугольник Фибоначчи. Прямоугольник с шириной и высотой, равными двум соседним числам последовательности, представляет собой так называемый "Золотой прямоугольник", идеальный прямоугольник. Золотой прямоугольник можно разбить на более мелкие, с размерами, соответствующими соседним числам Фибоначчи. Если мы возьмем этот золотой прямоугольник и разобьем его на более мелкие в соответствии с последовательностью Фибоначчи и разделим каждый из них, система начнет приобретать некую форму! Мы увидим так называемую форму - "Спираль Фибоначчи".

№ слайда 5 Геометрическое доказательство для суммы квадратов первых n чисел Фибоначчи
Описание слайда:

Геометрическое доказательство для суммы квадратов первых n чисел Фибоначчи

№ слайда 6 Спирали Фибоначчи в природе.
Описание слайда:

Спирали Фибоначчи в природе.

№ слайда 7 Тысячелетник.  Складывая его старые и новые ветви можно увидеть последователь
Описание слайда:

Тысячелетник.  Складывая его старые и новые ветви можно увидеть последовательность Фибоначчи.

№ слайда 8 Цветы. Если пересчитать лепестки некоторых наиболее распространенных цветов,
Описание слайда:

Цветы. Если пересчитать лепестки некоторых наиболее распространенных цветов, - например, ириса с его 3 лепестками, первоцвета с 5 лепестками, крестовника с 13 лепестками, маргаритки с 34 лепестками и астры с 55 (и 89) лепестками, то и тут видна последовательность Фибоначчи

№ слайда 9 Ураган. Ураган закручивается спиралью.
Описание слайда:

Ураган. Ураган закручивается спиралью.

№ слайда 10 Морские раковины.  Фибоначчи можно увидеть даже в самых обычных морских раков
Описание слайда:

Морские раковины.  Фибоначчи можно увидеть даже в самых обычных морских раковинах

№ слайда 11 Спираль фибоначи в растительном мире
Описание слайда:

Спираль фибоначи в растительном мире

№ слайда 12 Пирамиды.  В отличие от других египетских пирамид это не гробница, а скорее н
Описание слайда:

Пирамиды.  В отличие от других египетских пирамид это не гробница, а скорее неразрешимая головоломка из числовых комбинаций. Мастерство и труд и изобретательность использованные архитекторами при возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Ключ к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.

№ слайда 13 Галактики.  Спирали галактик сформированы абсолютно по принципу Фибоначчи.
Описание слайда:

Галактики.  Спирали галактик сформированы абсолютно по принципу Фибоначчи.

№ слайда 14 Пропорции Золотого сечения в разных сферах жизни.
Описание слайда:

Пропорции Золотого сечения в разных сферах жизни.

№ слайда 15 Пропорции человеческого тела.
Описание слайда:

Пропорции человеческого тела.

№ слайда 16 Парфенон.
Описание слайда:

Парфенон.

№ слайда 17 Основная идея. 	Оказывается, закономерность явлений природы, строение и много
Описание слайда:

Основная идея. Оказывается, закономерность явлений природы, строение и многообразие живых организмов на нашей планете, всё, что нас окружает, поражая воображение своей гармонией и упорядоченностью, законы мироздания, движение человеческой мысли и достижения науки – всё это объясняет суммационная последовательность Фибоначчи.


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 16.09.2015
Раздел Математика
Подраздел Презентации
Просмотров194
Номер материала ДA-047691
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх