1076808
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 1.410 руб.;
- курсы повышения квалификации от 430 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 90%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до конца апреля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

ИнфоурокМатематикаПрезентацииПрезентация по теме : "Великие математики"

Презентация по теме : "Великие математики"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Великие математики. Подготовил студент группы ПОВТ-22 Лобанов Виктор Владимир...
Карл Фридрих Гаусс. ГАУСС (Gaub, Gauss) Карл Фридрих (30 апреля 1777, Брауншв...
1777—1798 годы Дед Гаусса был бедным крестьянином, отец — садовником, каменщи...
С 1795 по 1798 год Гаусс учился в Гёттингенском университете. Это наиболее пл...
1798—1816 годы Памятник Гауссу в Брауншвейге с изображенной на нём 17-лучевой...
1805: Гаусс женился на Иоганне Остгоф. У них было трое детей.   1806: от раны...
Как раз в четвёртую годовщину свадьбы умирает Иоганна, вскоре после рождения...
1816—1855 годы . 1821: в связи с работами по геодезии Гаусс начинает историче...
1831: умирает вторая жена, у Гаусса начинается тяжелейшая бессонница. В Гетти...
1837: Вебера увольняют за отказ принести присягу новому королю Ганновера. Гау...
И ЕЩЕ НЕМНОГО О ВЕЛИКИХ МАТЕМАТИКОВ……
Архимед. Архимед как математик. До нас дошло 13 трактатов Архимеда. В самом з...
Пифагор Самосский. ПИФАГОР Самосский (6 в. до н. э.), древнегреческий философ...
Лобачевский Николай Иванович. ЛОБАЧЕВСКИЙ Николай Иванович (1792-1856), росси...
Рене Декарт. ДЕКАРТ (Descartes) Рене (латинизированное — Картезий; Cartesius)...
Евклид. ЕВКЛИД, древнегреческий математик. Работал в Александрии в 3 в. до н....
Келдыш Мстислав Всеволодович. КЕЛДЫШ Мстислав Всеволодович (1911-78), российс...
Ковалевская Софья Васильевна. КОВАЛЕВСКАЯ Софья Васильевна (1850-91), российс...
Лейбниц Готфрид Вильгельм. ЛЕЙБНИЦ (Leibniz) Готфрид Вильгельм (1646-1716), н...
Исаак Ньютон. НЬЮТОН (Newton) Исаак (1643-1727), английский математик, механи...

Описание презентации по отдельным слайдам:

1 слайд Великие математики. Подготовил студент группы ПОВТ-22 Лобанов Виктор Владимир
Описание слайда:

Великие математики. Подготовил студент группы ПОВТ-22 Лобанов Виктор Владимирович

2 слайд Карл Фридрих Гаусс. ГАУСС (Gaub, Gauss) Карл Фридрих (30 апреля 1777, Брауншв
Описание слайда:

Карл Фридрих Гаусс. ГАУСС (Gaub, Gauss) Карл Фридрих (30 апреля 1777, Брауншвейг, ныне Германия — 23 февраля 1855, Геттинген, Ганноверское королевство, ныне Германия), немецкий математик, астроном, геодезист и физик. Юный гений Еще при жизни Гаусс был удостоен почетного титула «принц математиков». Он был единственным сыном бедных родителей. Школьные учителя были так поражены его математическими и лингвистическими способностями, что обратились к герцогу Брауншвейгскому с просьбой о поддержке, и герцог дал деньги на продолжение обучения в школе и в Геттингенском университете (в 1795-98). Степень доктора Гаусс получил в 1799 в университете Хельмштедта. Основная теорема алгебры С именем Гаусса также связана основная теорема алгебры, согласно которой число корней многочлена (действительных и комплексных) равно степени многочлена (при подсчете числа корней кратный корень учитывается столько раз, какова его степень). Первое доказательство основной теоремы алгебры Гаусс дал в 1799, а позднее предложил еще несколько доказательств.

3 слайд 1777—1798 годы Дед Гаусса был бедным крестьянином, отец — садовником, каменщи
Описание слайда:

1777—1798 годы Дед Гаусса был бедным крестьянином, отец — садовником, каменщиком, смотрителем каналов в герцогстве Брауншвейг. Уже в двухлетнем возрасте мальчик показал себя вундеркиндом. В три года он умел читать и писать, даже исправлял счётные ошибки отца. Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат 50 \times 101=5050.   До самой старости он привык большую часть вычислений производить в уме.   С учителем ему повезло: М. Бартельс (впоследствии учитель Лобачевского) оценил исключительный талант юного Гаусса и сумел выхлопотать ему стипендию от герцога Брауншвейгского. Это помогло Гауссу закончить колледж Collegium Carolinum в Брауншвейге (1792—1795).   Свободно владея множеством языков, Гаусс некоторое время колебался в выборе между филологией и математикой, но предпочёл последнюю. Он очень любил латинский язык и значительную часть своих трудов написал на латыни; любил английскую, французскую и русскую литературу. В возрасте 62 года Гаусс начал изучать русский язык, чтобы ознакомиться с трудами Лобачевского, и вполне преуспел в этом деле.   В колледже Гаусс изучил труды Ньютона, Эйлера, Лагранжа. Уже там он сделал несколько открытий в высшей арифметике, в том числе доказал закон взаимности квадратичных вычетов. Лежандр, правда, открыл этот важнейший закон раньше, но строго доказать не сумел; Эйлеру это также не удалось. Кроме этого, Гаусс создал «метод наименьших квадратов» (тоже независимо открытый Лежандром) и начал исследования в области «нормального распределения ошибок».

4 слайд С 1795 по 1798 год Гаусс учился в Гёттингенском университете. Это наиболее пл
Описание слайда:

С 1795 по 1798 год Гаусс учился в Гёттингенском университете. Это наиболее плодотворный период в жизни Гаусса.   1796: Гаусс доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n-угольника с помощью циркуля и линейки: если n — простое число, то оно должно быть вида n=2^{2^k}+1 (числом Ферма). Этим открытием Гаусс очень дорожил и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг.   С 1796 года Гаусс ведёт краткий дневник своих открытий. Многое он, подобно Ньютону, не публиковал, хотя это были результаты исключительной важности (эллиптические функции, неевклидова геометрия и др.). Своим друзьям он пояснял, что публикует только те результаты, которыми доволен и считает завершёнными. Многие отложенные или заброшенные им идеи позже воскресли в трудах Абеля, Якоби, Коши, Лобачевского и др. Кватернионы он тоже открыл за 30 лет до Гамильтона (назвав их «мутациями»).

5 слайд 1798—1816 годы Памятник Гауссу в Брауншвейге с изображенной на нём 17-лучевой
Описание слайда:

1798—1816 годы Памятник Гауссу в Брауншвейге с изображенной на нём 17-лучевой звездой   В 1798 году Гаусс вернулся в Брауншвейг и жил там до 1807 года.   Герцог продолжал опекать молодого гения. Он оплатил печать его докторской диссертации (1799) и пожаловал неплохую стипендию. В своей докторской Гаусс впервые доказал основную теорему алгебры. До Гаусса было много попыток это доказать, наиболее близко к цели подошёл Д’Аламбер. Гаусс неоднократно возвращался к этой теореме и дал 4 различных доказательства её.   С 1799 года Гаусс — приват-доцент Брауншвейгского университета.   1801: избирается членом-корреспондентом Петербургской Академии наук.   После 1801 года Гаусс, не порывая с теорией чисел, расширил круг своих интересов, включив в него и естественные науки. Катализатором послужило открытие малой планеты Церера (1801), вскоре после наблюдений потерянной. 24-летний Гаусс проделал (за несколько часов) сложнейшие вычисления по новому, открытому им же методу, и указал место, где искать беглянку; там она, к общему восторгу, и была вскоре обнаружена.   Слава Гаусса становится общеевропейской. Многие научные общества Европы избирают Гаусса своим членом, герцог увеличивает пособие, а интерес Гаусса к астрономии ещё более возрастает.

6 слайд 1805: Гаусс женился на Иоганне Остгоф. У них было трое детей.   1806: от раны
Описание слайда:

1805: Гаусс женился на Иоганне Остгоф. У них было трое детей.   1806: от раны, полученной на войне с Наполеоном, умирает его великодушный покровитель-герцог. Несколько стран наперебой приглашают Гаусса на службу (в том числе в Петербург). По рекомендации Александра фон Гумбольдта Гаусса назначают профессором в Гёттингене и директором Гёттингенской обсерватории. Эту должность он занимал до самой смерти.   1807: наполеоновские войска занимают Гёттинген. Все граждане облагаются контрибуцией, в том числе огромную сумму — 2000 франков — требуется заплатить Гауссу. Ольберс и Лаплас тут же приходят ему на помощь, но Гаусс отклонил их деньги; тогда неизвестный из Франкфурта прислал ему 1000 гульденов, и этот дар пришлось принять. Только много позднее узнали, что неизвестным был курфюрст Майнцский, друг Гёте.

7 слайд Как раз в четвёртую годовщину свадьбы умирает Иоганна, вскоре после рождения
Описание слайда:

Как раз в четвёртую годовщину свадьбы умирает Иоганна, вскоре после рождения третьего ребёнка. В Германии разруха и анархия. Это самые тяжёлые годы для Гаусса.   1810: новая женитьба, на Минне Вальдек, подруге Иоганны. Число детей Гаусса вскоре увеличивается до шести.   1810: новые почести. Гаусс получает премию Парижской академии наук и золотую медаль Лондонского королевского общества.   1811: появляется новая комета. Гаусс быстро и очень точно рассчитывает её орбиту. Начинает работу над комплексным анализом, открывает (но не публикует) теорему, позже переоткрытую Коши и Вейерштрассом: интеграл от аналитической функции по замкнутому контуру равен нулю.   1812: исследование гипергеометрического ряда, обобщающего разложение практически всех известных тогда функций.   Знаменитую комету «пожара Москвы» (1812) всюду наблюдают, пользуясь вычислениями Гаусса.   1815: публикует первое строгое доказательство основной теоремы алгебры.

8 слайд 1816—1855 годы . 1821: в связи с работами по геодезии Гаусс начинает историче
Описание слайда:

1816—1855 годы . 1821: в связи с работами по геодезии Гаусс начинает исторический цикл работ по теории поверхностей. В науку входит «гауссова кривизна». Положено начало дифференциальной геометрии. Именно результаты Гаусса вдохновили Римана на его классическую диссертацию о «римановой геометрии».   Итогом изысканий Гаусса была работа «Исследования относительно кривых поверхностей» (1822). В ней свободно используются общие криволинейные координаты на поверхности. Гаусс далеко развил метод конформного отображения, которое в картографии сохраняет углы (но искажает расстояния); оно применяется также в аэро/гидродинамике и электростатике.   1824: избирается иностранным членом Петербургской Академии наук.   1825: открывает гауссовы комплексные целые числа, строит для них теорию делимости и сравнений. Успешно применяет их для решения сравнений высоких степеней. Гаусс и Вебер. Скульптура в Гёттингене.

9 слайд 1831: умирает вторая жена, у Гаусса начинается тяжелейшая бессонница. В Гетти
Описание слайда:

1831: умирает вторая жена, у Гаусса начинается тяжелейшая бессонница. В Геттинген приезжает приглашённый по инициативе Гаусса 27-летний талантливый физик Вильгельм Вебер, с которым Гаусс познакомился в 1828 году, в гостях у Гумбольдта. Оба энтузиаста науки сдружились, несмотря на разницу в возрасте, и начинают цикл исследований электромагнетизма.   1832: «Теория биквадратичных вычетов». С помощью тех же целых комплексных гауссовых чисел доказываются важные арифметические теоремы не только для комплексных, но и для вещественных чисел. Здесь же он приводит геометрическую интерпретацию комплексных чисел, которая с этого момента становится общепринятой.   1833: Гаусс изобретает электрический телеграф и (вместе с Вебером) строит его действующую модель.

10 слайд 1837: Вебера увольняют за отказ принести присягу новому королю Ганновера. Гау
Описание слайда:

1837: Вебера увольняют за отказ принести присягу новому королю Ганновера. Гаусс вновь остался в одиночестве.   1839: 62-летний Гаусс овладевает русским языком и в письмах в Петербургскую Академию просил прислать ему русские журналы и книги, в частности «Капитанскую дочку» Пушкина. Предполагают, что это связано с работами Лобачевского. В 1842 году по рекомендации Гаусса Лобачевский избирается иностранным членом-корреспондентом Гёттингенского королевского общества.   Умер Гаусс 23 февраля 1855 года в Гёттингене.   Современники вспоминают Гаусса как жизнерадостного, дружелюбного человека, с отличным чувством юмора. ……..

11 слайд И ЕЩЕ НЕМНОГО О ВЕЛИКИХ МАТЕМАТИКОВ……
Описание слайда:

И ЕЩЕ НЕМНОГО О ВЕЛИКИХ МАТЕМАТИКОВ……

12 слайд Архимед. Архимед как математик. До нас дошло 13 трактатов Архимеда. В самом з
Описание слайда:

Архимед. Архимед как математик. До нас дошло 13 трактатов Архимеда. В самом знаменитом из них — «О шаре и цилиндре» (в двух книгах) Архимед устанавливает, что площадь поверхности шара в 4 раза больше площади наибольшего его сечения; формулирует соотношение объемов шара и описанного около него цилиндра как 2:3 — открытие, которым он так дорожил, что в завещании просил поставить на своей могиле памятник с изображением цилиндра с вписанным в него шаром и надписью расчета (памятник через полтора века видел Цицерон). В этом же трактате сформулирована аксиома Архимеда (называемая иногда аксиомой Евдокса), играющая важную роль в современной математике. В трактате «О коноидах и сфероидах» Архимед рассматривает шар, эллипсоид, параболоид и гиперболоид вращения и их сегменты и определяет их объемы. В сочинении «О спиралях» исследует свойства кривой, получившей его имя (см. Архимедова спираль) и касательной к ней. В трактате «Измерение круга» Архимед предлагает метод определения числа p, который использовался до конца 17 в., и указывает две удивительно точные границы числа p: 3 10/71<p<3 1/7. В «Псаммите» («Исчисление песчинок») Архимед предлагает систему счисления, позволявшую записывать сверхбольшие числа, что поражало воображение современников. В «Квадратуре параболы» определяет площадь сегмента параболы сначала с помощью «механического» метода, а затем доказывает результаты геометрическим путем. Кроме того, Архимеду принадлежат «Книга лемм», «Стомахион» и обнаруженные только в 20 в. «Метод» (или «Эфод») и «Правильный семиугольник». В «Методе» Архимед описывает процесс открытия в математике, проводя четкое различие между своими механическими приемами и математическим доказательством.    

13 слайд Пифагор Самосский. ПИФАГОР Самосский (6 в. до н. э.), древнегреческий философ
Описание слайда:

Пифагор Самосский. ПИФАГОР Самосский (6 в. до н. э.), древнегреческий философ, религиозный и политический деятель, основатель пифагореизма, математик. Пифагору приписывается изучение свойств целых чисел и пропорций, доказательство теоремы Пифагора и др. Пифагор известен школьникам главным образом по геометрической теореме о связи между сторонами прямоугольного треугольника. Для современников этот греческий мудрец уже казался полубогом. Его религиозно-философское учение и основанный им союз пифагорейцев оказали большое влияние на жизнь Греции и позднее на развитие философии в средневековье и даже в новом времени. В математике с его именем также связаны и другие открытия. ПИФАГОРОВЫ ЧИСЛА, тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5.  

14 слайд Лобачевский Николай Иванович. ЛОБАЧЕВСКИЙ Николай Иванович (1792-1856), росси
Описание слайда:

Лобачевский Николай Иванович. ЛОБАЧЕВСКИЙ Николай Иванович (1792-1856), российский математик, создатель неевклидовой геометрии (геометрии Лобачевского). Ректор Казанского университета (1827-46). Открытие Лобачевского (1826, опубликованное 1829-30), не получившее признания современников, совершило переворот в представлении о природе пространства, в основе которого более 2 тыс. лет лежало учение Евклида, и оказало огромное влияние на развитие математического мышления. Труды по алгебре, математическому анализу, теории вероятностей, механике, физике и астрономии. Лобачевский вошел в историю математики не только как гениальный геометр, но и как автор фундаментальных работ в области алгебры, теории бесконечных рядов и приближенного решения уравнений.

15 слайд Рене Декарт. ДЕКАРТ (Descartes) Рене (латинизированное — Картезий; Cartesius)
Описание слайда:

Рене Декарт. ДЕКАРТ (Descartes) Рене (латинизированное — Картезий; Cartesius) (1596-1650), французский философ, математик, физик и физиолог. С 1629 в Нидерландах. Заложил основы аналитической геометрии, дал понятия переменной величины и функции, ввел многие алгебраические обозначения. Высказал закон сохранения количества движения, дал понятие импульса силы. Значение работ Декарта в математике и физике Естественно-научные достижения Декарта родились как «побочный продукт» разрабатываемого им единыго метода единой науки. Декарту принадлежит заслуга создания современных систем обозначений: он ввел знаки переменных величин (x, y, z...), коэффициентов (a, b, c...), обозначение степеней (a2, x-1...). Декарт является одним из авторов теории уравнений: им сформулировано правило знаков для определения числа положительных и отрицательных корней, поставил вопрос о границах действительных корней и выдвинул проблему приводимости, т. е. представления целой рациональной функции с рациональными коэффициентами в виде произведения двух функций этого рода. Он указал, что уравнение 3-й степени разрешимо в квадратных радикалах (а также указал решение с помощью циркуля и линейки, если это уравнение приводимо). Декарт является одним из создателей аналитической геометрии (которую он разрабатывал одновременно с П. Ферма), позволявшей алгебраизировать эту науку с помощью метода координат. Предложенная им система координат получила его имя. В работе «Геометрия» (1637), открывшей взаимопроникновение алгебры и геометрии, Декарт ввел впервые понятия переменной величины и функции. Переменная трактуется им двояко: как отрезок переменной длины и постоянного направления (текущая координата точки, описывающей своим движением кривую) и как непрерывная числовая переменная, пробегающая совокупность чисел, выражающих этот отрезок. В область изучения геометрии Декарт включил «геометрические» линии (позднее названные Лейбницем алгебраическими) — линии, описываемые при движении шарнирными механизмами. Трансцендентные кривые (сам Декарт называет их «механическими») он исключил из своей геометрии.  

16 слайд Евклид. ЕВКЛИД, древнегреческий математик. Работал в Александрии в 3 в. до н.
Описание слайда:

Евклид. ЕВКЛИД, древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг), содержащий основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объемов, включавшего элементы теории пределов, оказал огромное влияние на развитие математики. Работы по астрономии, оптике, теории музыки. «Начала» геометрической алгебры. 3-я книга посвящена свойствам круга, его касательных и хорд. В 4-й книге рассматриваются правильные многоугольники, причем построение правильного пятнадцатиугольника принадлежит, видимо, самому Евклиду. Книга 5-я и 6-я посвящены теории отношений и ее применению к решению алгебраических задач. Книга 7-я, 8-я и 9-я посвящены теории целых и рациональных чисел, разработанной пифагорейцами не позднее 5 в. до н. э. Эти три книги написаны, по-видимому, на основе не дошедших до нас сочинений Архита. В книге 10-й рассматриваются квадратичные иррациональности и излагаются результаты, полученные Теэтетом. В книге 11-й рассматриваются основы стереометрии. В 12-й книге с помощью исчерпывания метода Евдокса доказываются теоремы, относящиеся к площади круга и объему шара, выводятся отношения объемов пирамид, конусов, призм и цилиндров. В основу 13-й книги легли результаты, полученные Теэтетом в области правильных многогранников. Книги 14-я и 15-я не принадлежат Евклиду, они были написаны позднее: 14-я — во 2 в. до н. э., а 15-я — в 6 в.    

17 слайд Келдыш Мстислав Всеволодович. КЕЛДЫШ Мстислав Всеволодович (1911-78), российс
Описание слайда:

Келдыш Мстислав Всеволодович. КЕЛДЫШ Мстислав Всеволодович (1911-78), российский математик и механик, академик АН СССР (1946), президент АН СССР (1961-75), трижды Герой Социалистического Труда (1956, 1961, 1971). Сын В. М. Келдыша. Фундаментальные труды по математике (теории функций комплексного переменного, функциональному анализу и др.), аэрогидродинамике, теории колебаний. Исследовал многие проблемы авиационной и атомной техники, вычислительной и машинной математики. Руководил рядом советских космических программ, включая полеты человека в космос. Ленинская премия (1957), Государственная премия СССР (1942, 1946). Золотая медаль имени Ломоносова АН СССР (1976).    

18 слайд Ковалевская Софья Васильевна. КОВАЛЕВСКАЯ Софья Васильевна (1850-91), российс
Описание слайда:

Ковалевская Софья Васильевна. КОВАЛЕВСКАЯ Софья Васильевна (1850-91), российский математик, первая женщина член-корреспондент Петербургской АН (1889). Сестра А. В. Жаклар, жена В. О. Ковалевского. Основные труды по математическому анализу (дифференциальные уравнения и аналитические функции), механике (вращение твердого тела вокруг неподвижной точки) и астрономии (форма колец Сатурна). Автор беллетристических произведений (повесть «Нигилистка», опубликована 1892; «Воспоминания детства», 1889, полный текст — 1893).

19 слайд Лейбниц Готфрид Вильгельм. ЛЕЙБНИЦ (Leibniz) Готфрид Вильгельм (1646-1716), н
Описание слайда:

Лейбниц Готфрид Вильгельм. ЛЕЙБНИЦ (Leibniz) Готфрид Вильгельм (1646-1716), немецкий философ, математик, физик, языковед. С 1676 на службе у ганноверских герцогов. Основатель и президент (с 1700) Бранденбургского научного общества (позднее — Берлинская АН). По просьбе Петра I разработал проекты развития образования и государственного управления в России. Реальный мир, по Лейбницу, состоит из бесчисленных психических деятельных субстанций — монад, находящихся между собой в отношении предустановленной гармонии («Монадология», 1714); существующий мир создан богом как «наилучший из всех возможных миров» («Теодицея», 1710). В духе рационализма развил учение о прирожденной способности ума к познанию высших категорий бытия и всеобщих и необходимых истин логики и математики («Новые опыты о человеческом разуме», 1704). Предвосхитил принципы современной математической логики («Об искусстве комбинаторики», 1666). Один из создателей дифференциального и интегрального исчислений.

20 слайд Исаак Ньютон. НЬЮТОН (Newton) Исаак (1643-1727), английский математик, механи
Описание слайда:

Исаак Ньютон. НЬЮТОН (Newton) Исаак (1643-1727), английский математик, механик, астроном и физик, создатель классической механики, член (1672) и президент (с 1703) Лондонского королевского общества. Фундаментальные труды «Математические начала натуральной философии» (1687) и «Оптика» (1704). Разработал (независимо от Г. Лейбница) дифференциальное и интегральное исчисления. Открыл дисперсию света, хроматическую аберрацию, исследовал интерференцию и дифракцию, развивал корпускулярную теорию света, высказал гипотезу, сочетавшую корпускулярные и волновые представления. Построил зеркальный телескоп. Сформулировал основные законы классической механики. Открыл закон всемирного тяготения, дал теорию движения небесных тел, создав основы небесной механики.

Общая информация

Номер материала: ДБ-092959

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.