Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация решение и оформление задач 2 части ГИА

Презентация решение и оформление задач 2 части ГИА


До 7 декабря продлён приём заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)

  • Математика
Методика решений заданий и оформление второй части
Найти все значения k, при которых прямая y = kx пересекает в одной точке лома...
Найти все значения k, при которых прямая y = kx пересекает в одной точке лома...
Л.В. Кузнецова и др. № 5.34. При каких значениях p вершины парабол y = x2 – 2...
Л.В. Кузнецова и др. № 2.59. При каких значениях а один корень квадратного ур...
Л.В. Кузнецова и др. № 5.39. При каких значениях р прямая у = 0,5х + р образу...
Задачи на « концентрацию», « смеси и сплавы». масса смеси ( сплава); концентр...
Задачи на « концентрацию», « смеси и сплавы». № 7.50 1). В лаборатории имеетс...
Задачи на « концентрацию», « смеси и сплавы». 0,01х + 0,01у = 0,64 Примем за...
Задачи на « концентрацию», « смеси и сплавы». № 7.49 1). В свежих яблоках 80%...
Задачи на « концентрацию», « смеси и сплавы». № 7.51 1). При смешивании перво...
Прогрессии Кузнецова Л.В. № 6.30 (2). Решите уравнение: 1. Рассмотрим последо...
Прогрессии Кузнецова Л.В. № 6.28 (1). Найти сумму первых 20 совпадающих члено...
Наименьшее и наибольшее значение Кузнецова Л.В. № 2.62. Докажите, что уравнен...
Наименьшее и наибольшее значение
1 из 15

Описание презентации по отдельным слайдам:

№ слайда 1 Методика решений заданий и оформление второй части
Описание слайда:

Методика решений заданий и оформление второй части

№ слайда 2 Найти все значения k, при которых прямая y = kx пересекает в одной точке лома
Описание слайда:

Найти все значения k, при которых прямая y = kx пересекает в одной точке ломаную, заданную условием: 1) Построим ломаную. y = - 2x, у = 2, у = 3 х – 4 Выделим указанные участки этих прямых. 2) Прямая y = kx проходит через начало координат. Функции и графики Х - 2 0 у 4 0 Х 0 2 у 2 2 Х 0 2 у - 4 2

№ слайда 3 Найти все значения k, при которых прямая y = kx пересекает в одной точке лома
Описание слайда:

Найти все значения k, при которых прямая y = kx пересекает в одной точке ломаную, заданную условием. Прямая y = kx проходит через начало координат. Рассмотрим различные случаи расположения этих графиков. Ж м Прямая у = х пересекает ломаную в одной точке (2;2). При k = - 2 – прямая и ломаная имеют бесконечное множество общих точек. Если k ≥ 3 и k < - 2, то прямая у = kx пересекает ломаную в одной точке. Остальные значения k не удовлетворяют условию. Ответ: Или k < -2, k = 1, k ≥ 3. Функции и графики

№ слайда 4 Л.В. Кузнецова и др. № 5.34. При каких значениях p вершины парабол y = x2 – 2
Описание слайда:

Л.В. Кузнецова и др. № 5.34. При каких значениях p вершины парабол y = x2 – 2px – 1 и y = - x2 + 4px + p расположены по разные стороны от оси Ох? Найдем координаты вершин парабол. y = x2 – 2px – 1: хв = p; yв = - 1 – р2. y = - x2 + 4px + p: хв = 2р; ув = 4р2 + р. Т.к. вершины расположены по разные стороны от оси Ох, то ординаты вершин должны иметь разные знаки. - р2 – 1 < 0, то 4р2 + р > 0 p (4p +1) > 0 p - ¼ 0 + - + Ответ: р < - 0,25; p > 0. или Функции и графики

№ слайда 5 Л.В. Кузнецова и др. № 2.59. При каких значениях а один корень квадратного ур
Описание слайда:

Л.В. Кузнецова и др. № 2.59. При каких значениях а один корень квадратного уравнения x2 – (a + 1)x + 2a2 = 0 больше ½, а другой меньше ½? Введем функцию f(x) = x2 – (a + 1)x + 2a2. Графиком этой функции является парабола ветви которой направлены вверх. Нули функции должны быть расположены по разные стороны от числа ½. Значит f(½) < 0. 2а2 - ½ (а + 1) + ¼ < 0 2a2 - ½ a - ¼ < 0 8a2 – 2a – 1 <0 Ответ: - ¼ < а < ½ Функции и графики

№ слайда 6 Л.В. Кузнецова и др. № 5.39. При каких значениях р прямая у = 0,5х + р образу
Описание слайда:

Л.В. Кузнецова и др. № 5.39. При каких значениях р прямая у = 0,5х + р образует с осями координат треугольник площадь которого равна 81? Прямая у = 0,5х + р параллельна прямой у = 0,5х и пересекает оси координат в точках (0; р) и (- 2р; 0) ΔАОВ – прямоугольный. Ответ: р = - 9; р = 9. Функции и графики

№ слайда 7 Задачи на « концентрацию», « смеси и сплавы». масса смеси ( сплава); концентр
Описание слайда:

Задачи на « концентрацию», « смеси и сплавы». масса смеси ( сплава); концентрация ( доля чистого вещества в смеси); количество чистого вещества в смеси ( сплаве). Масса смеси х концентрация = количество вещества

№ слайда 8 Задачи на « концентрацию», « смеси и сплавы». № 7.50 1). В лаборатории имеетс
Описание слайда:

Задачи на « концентрацию», « смеси и сплавы». № 7.50 1). В лаборатории имеется 2 кг раствора кислоты одной концентрации и 6 кг этой же кислоты другой концентрации. Если эти растворы смешать, то получится раствор, концентрация которого 36%. Если же смешать равные количества этих растворов, то получится раствор, содержащий 32 % кислоты. Какова концентрация каждого из двух имеющихся растворов? Решение: Пусть концентрация первого раствора – х%, а концентрация второго раствора – у%, тогда: 0,02х + 0,06у = 2,88 № раствора Масса раствора, кг Концентрация кислоты Количество кислоты, кг 1 2 0,01х 0,02х 2 6 0,01у 0,06у 3 8 0,36 8*0,36

№ слайда 9 Задачи на « концентрацию», « смеси и сплавы». 0,01х + 0,01у = 0,64 Примем за
Описание слайда:

Задачи на « концентрацию», « смеси и сплавы». 0,01х + 0,01у = 0,64 Примем за 1 одинаковую массу растворов, тогда: Решим систему уравнений: Ответ: Концентрация первого раствора – 24%, концентрация второго раствора – 40%. № раствора Масса раствора, кг Концентрация кислоты Количество кислоты, кг 1 1 0,01х 0,01х 2 1 0,01у 0,01у 3 2 0,32 0,64

№ слайда 10 Задачи на « концентрацию», « смеси и сплавы». № 7.49 1). В свежих яблоках 80%
Описание слайда:

Задачи на « концентрацию», « смеси и сплавы». № 7.49 1). В свежих яблоках 80% воды, а сушеных – 20%. На сколько процентов уменьшается масса яблок при сушке? Решение: х = 0,8 – 0,2(1 – х) Примем за 1 массу свежих яблок и пусть масса яблок при сушке уменьшится на х кг, тогда имеем: При сушке потеря массы яблок происходит за счет потери массы воды. Имеем уравнение: х = 0,6 + 0,2х 0,8х = 0,6 х = 0,75. Яблоки при сушке теряют 0,75 от своей массы, т. е. 75%. Ответ: 75%. Масса яблок, кг Концентрация воды Количество воды, кг свежие 1 0,8 0,8 сушеные 1 - х 0,2 0,2(1 – х)

№ слайда 11 Задачи на « концентрацию», « смеси и сплавы». № 7.51 1). При смешивании перво
Описание слайда:

Задачи на « концентрацию», « смеси и сплавы». № 7.51 1). При смешивании первого раствора кислоты, концентрация которого 20%, и второго раствора этой же кислоты, концентрация которого 50%, получили раствор, содержащий 30% кислоты. В каком отношении были взяты 1 и 2 растворы? Решение: Пусть масса первого раствора – х, а масса второго раствора – у, тогда: 0,2х + 0,5у = 0,3(х + у) Количество кислоты в смеси складывается из количества кислоты первого и второго растворов, поэтому имеем уравнение: 2х + 5у = 3х + 3у, 2у = х, х : у = 2 : 1 Ответ: первый и второй растворы взяты в отношении 2 : 1. № раствора Масса раствора, кг Концентрация кислоты Количество кислоты, кг 1 х 0, 2 0,2х 2 у 0, 5 0,5у 3 х + у 0,3 0,3(х + у)

№ слайда 12 Прогрессии Кузнецова Л.В. № 6.30 (2). Решите уравнение: 1. Рассмотрим последо
Описание слайда:

Прогрессии Кузнецова Л.В. № 6.30 (2). Решите уравнение: 1. Рассмотрим последовательность (ап): а3 - а2 = а2 - а1 = - 1/х2 = d ( ап ) – арифметическая прогрессия по определению. Х = 15. Ответ: х = 15.

№ слайда 13 Прогрессии Кузнецова Л.В. № 6.28 (1). Найти сумму первых 20 совпадающих члено
Описание слайда:

Прогрессии Кузнецова Л.В. № 6.28 (1). Найти сумму первых 20 совпадающих членов двух арифметических прогрессий: 3, 8, 13, … и 4, 11, 18,.. d1 = 5 d2 =7. Решение 1.Пусть (ап) –последовательность совпадающих членов арифметических прогрессий, тогда она тоже является арифметической прогрессией с разностью d. НОК (d1, d2) = 35 = d. Первый совпадающий член равен 18, n =20, то Решение 2. Рассмотрим прогрессии: 3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53,… 4, 11, 18, 25, 32, 39, 46, 53… Далее решение №1. Возможна вычислительная ошибка!

№ слайда 14 Наименьшее и наибольшее значение Кузнецова Л.В. № 2.62. Докажите, что уравнен
Описание слайда:

Наименьшее и наибольшее значение Кузнецова Л.В. № 2.62. Докажите, что уравнение не имеет корней. 1. Рассмотрим функции: а) - которая принимает наименьшее значение равное 1 при х = -1 б) которая принимает наименьшее значение равное 1, при х = 2. 2. Произведение двух множителей равно 1 тогда и только тогда, когда каждый из них равен 1, либо множители принимают взаимно – обратные значения. 3.Т.к. наименьшее значение равно 1, взаимно – обратными они быть не могут . 4. Каждый из них равен 1 при различных значениях х, т.е. одновременно они не могут быть равны 1. Ответ: Уравнение не имеет корней.

№ слайда 15 Наименьшее и наибольшее значение
Описание слайда:

Наименьшее и наибольшее значение


57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)

Автор
Дата добавления 18.11.2016
Раздел Математика
Подраздел Презентации
Просмотров14
Номер материала ДБ-366993
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх