334651
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 70%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаПрезентацииПрезентация внеклассное мероприятие по математике "Математика на шахматной доске"

Презентация внеклассное мероприятие по математике "Математика на шахматной доске"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
МАТЕМАТИКА НА ШАХМАТНОЙ ДОСКЕ Автор: Добролежа Михаил Сергеевич учитель матем...
Играйте в шахматы – будете знать математику на 5
Шахматы (от персидского шах мат - властитель умер). 		Игра 32 фигурами (по 1...
Смысл шахмат прост. Используйте фигуры на доске для взятия короля оппонента....
Шахматная доска состоит из 64 клеток (32 светлых и 32 темных клеток). 8 рядов...
Пешки Пешки – основное подразделение шахматной армии. Они передвигаются на...
Конь Конь передвигается на доске по окружности. Он двигается на две клетки...
Слон Слон двигается на любое количество клеток по диагонали. Каждый игрок р...
Ладья Ладья двигается на любое количество клеток вперед и назад: по вертика...
Ферзь Ферзь передвигается на любое количество клеток вперед и назад: по вер...
Король Король - самая главная фигура в игре. Король передвигается на одну к...
Симметрия в шахматах 	Симметрия бывает различных типов; наиболее распростране...
Геометрия шахматной доски Исход игры легко оценить при помощи «правила квадра...
Задача о зёрнах на шахматной доске При удвоении количества зёрен на каждой по...
Ответьте на вопросы: Какая страна считается родиной шахмат. Какая горизонталь...

Описание презентации по отдельным слайдам:

1 слайд МАТЕМАТИКА НА ШАХМАТНОЙ ДОСКЕ Автор: Добролежа Михаил Сергеевич учитель матем
Описание слайда:

МАТЕМАТИКА НА ШАХМАТНОЙ ДОСКЕ Автор: Добролежа Михаил Сергеевич учитель математики МКОУ СОШ №4 п. им. Кирова Труновского района Ставропольского края

2 слайд Играйте в шахматы – будете знать математику на 5
Описание слайда:

Играйте в шахматы – будете знать математику на 5

3 слайд Шахматы (от персидского шах мат - властитель умер). 		Игра 32 фигурами (по 1
Описание слайда:

Шахматы (от персидского шах мат - властитель умер). Игра 32 фигурами (по 16 - белого и черного цвета) на 64-клеточной доске для двух партнеров. Родина шахмат - Индия.

4 слайд Смысл шахмат прост. Используйте фигуры на доске для взятия короля оппонента.
Описание слайда:

Смысл шахмат прост. Используйте фигуры на доске для взятия короля оппонента. Однако, и взятие, и шах и мат сделать не так уж и просто.

5 слайд Шахматная доска состоит из 64 клеток (32 светлых и 32 темных клеток). 8 рядов
Описание слайда:

Шахматная доска состоит из 64 клеток (32 светлых и 32 темных клеток). 8 рядов именуемых вертикалями и 8 рядов именуемых горизонталями. Вертикали обозначены буквами, а горизонтали –цифрами. Численно-буквенная система дает каждой клетке на доске уникальное название, от а1 до h8. Ученикам предлагается задача: как узнать цвет клетки по ее названию. Если вертикали пронумеровать от 1 до 8, то каждая клетка получит свой уникальный номер (11; 21…). Если сумма цифр в номере четная, то клетка черная, если нечетная, то клетка белая.

6 слайд Пешки Пешки – основное подразделение шахматной армии. Они передвигаются на
Описание слайда:

Пешки Пешки – основное подразделение шахматной армии. Они передвигаются на одну клетку вперед и не могут двигаться назад.

7 слайд Конь Конь передвигается на доске по окружности. Он двигается на две клетки
Описание слайда:

Конь Конь передвигается на доске по окружности. Он двигается на две клетки вперед или назад, влево или вправо от конечной второй клетки. Важно заметить, что изначально с буквой «Г» ходы коня никто не связывал.

8 слайд Слон Слон двигается на любое количество клеток по диагонали. Каждый игрок р
Описание слайда:

Слон Слон двигается на любое количество клеток по диагонали. Каждый игрок располагает одним слоном, который передвигается по темным клеткам, и одним слоном, двигающимся по светлым клеткам.

9 слайд Ладья Ладья двигается на любое количество клеток вперед и назад: по вертика
Описание слайда:

Ладья Ладья двигается на любое количество клеток вперед и назад: по вертикали и по горизонтали. Движение ладьи происходит по прямым, параллельным осям координат в декартовой системе координат.

10 слайд Ферзь Ферзь передвигается на любое количество клеток вперед и назад: по вер
Описание слайда:

Ферзь Ферзь передвигается на любое количество клеток вперед и назад: по вертикали, горизонтали, и по диагонали. Ферзь вобрал в себя движения ладьи и слона и считается самой могущественной фигурой в игре.

11 слайд Король Король - самая главная фигура в игре. Король передвигается на одну к
Описание слайда:

Король Король - самая главная фигура в игре. Король передвигается на одну клетку в любом направлении. Взятие короля и есть цель шахматной игры. Король передвигается на единичный отрезок.

12 слайд Симметрия в шахматах 	Симметрия бывает различных типов; наиболее распростране
Описание слайда:

Симметрия в шахматах Симметрия бывает различных типов; наиболее распространенные – осевая и центральная. На шахматной доске при осевой симметрии осью служит прямая, разделяющая левый и правый фланги доски или нижнюю и верхнею части.

13 слайд Геометрия шахматной доски Исход игры легко оценить при помощи «правила квадра
Описание слайда:

Геометрия шахматной доски Исход игры легко оценить при помощи «правила квадрата». Достаточно выяснить, может ли король при своем ходе попасть в квадрат пешки. Итак, в нашей композиции черные при своем ходе делают ничью (попадают в квадрат), а при ходе противника проигрывают. Учащимся предлагается привести свои примеры композиций на отработку этого правила.

14 слайд Задача о зёрнах на шахматной доске При удвоении количества зёрен на каждой по
Описание слайда:

Задача о зёрнах на шахматной доске При удвоении количества зёрен на каждой последующей клетке сумма зёрен на всех 64 клетках определяется выражением Т64=1+2+4+…+263=264-1 что составляет 18 446 744 073 709 551 615. Рассказать легенду возникновения данной задачи.

15 слайд Ответьте на вопросы: Какая страна считается родиной шахмат. Какая горизонталь
Описание слайда:

Ответьте на вопросы: Какая страна считается родиной шахмат. Какая горизонтальная линия на шахматной доске является осью симметрии. Какая вертикальная линия на шахматной доске является осью симметрии. Сколько будет зерен на 5-й клетке, если класть на каждую следующую клетку в 2 раза больше зерен чем на предыдущей.

Общая информация

Номер материала: ДВ-111990

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Онлайн-конференция Идет регистрация