Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация по математике « Мир правильных многогранников» (11 класс)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Математика

Презентация по математике « Мир правильных многогранников» (11 класс)

библиотека
материалов
БОЛЬШОЙ ДОДЕКАЭДР Грани большого додекаэдра - пересекающиеся пятиугольники. В...
БОЛЬШОЙ ЗВЕЗДЧАТЫЙ ДОДЕКАЭДР Грани большого звездчатого додекаэдра - пентагра...
Мир правильных многогранников «Правильных выпуклых многогранников вызывающе м...
Введение Цель работы – рассмотреть основные этапы развития учения о правильны...
Великие ученые и правильные многогранники «На разных этапах развития математи...
Многогранники - тела, ограниченные плоскими многоугольниками, окружают нас п...
Правильные многогранники- платоновы тела и их виды Выпуклый многогранник назы...
 ПЛАТОНОВЫ ТЕЛА
Платон 428 (427) – 348 (347) гг. до нашей эры. Правильные многогранники иног...
«Правильные многогранники в философской картине мира Платона» Платон считал,...
Согласно философии Платона огонь тетраэдр вода икосаэдр воздух октаэдр земля...
ЕВКЛИД Древнегреческий мыслитель. Жил в третьем веке до н.э. В Александрии....
Всего существует пять видов правильных выпуклых многогранников. Их гранями я...
ТЕТРАЭДР Тетраэдр – представитель платоновых тел, то есть правильных выпуклых...
ГЕКСАЭДР (КУБ)			 Гексаэдр или куб– представитель платоновых тел, то есть п...
ОКТАЭДР Октаэдр – представитель семейства платоновых тел, то есть правильных...
ДОДЕКАЭДР Додекаэдр – представитель семейства платоновых тел. Додекаэдр имеет...
ИКОСАЭДР Икосаэдр – представитель платоновых тел. Поверхность икосаэдра сост...
формула Эйлера для правильных многогранников «Некоторые из его простейших отк...
Российский ученый, математик, механик, физик и астроном. По происхождению шв...
Формула Эйлера (для правильных выпуклых многогранников): Г + В – Р = 2 « В лю...
Г + В – Р = 2 			 Кол-во граней Кол-во вершин Кол-во ребер Вид грани Тетраэдр...
ФОРМУЛЫ ДЛЯ ПРАВИЛЬНЫХ МНОГОГРАННИКОВ Правильные многогранники ОБЪЕМ ПЛОЩАДЬ...
Развертки правильных многогранников Развёртка - развёрнутая на плоскости пове...
 Развёртки ( многогранная поверхность ) тетраэдра
Развёртка ( многогранная поверхность ) гексаэдра (куба)
Развёртка( многогранная поверхность ) октаэдра
Развёртка( многогранная поверхность ) 	додекаэдра
Развёртка( многогранная поверхность ) икосаэдра
ТЕЛА ПУАНСО-КЕПЛЕРА – звездчатые многогранники (правильные невыпуклые многогр...
ТЕЛА ПУАНСО-КЕПЛЕРА
Иоганн Кеплер (1571 – 1630 гг.) Немецкий астроном. В 1619 году описал два зве...
ТЕЛА АРХИМЕДА ТЕЛА АРХИМЕДА - полуправильные многогранники, описанные ещё уч...
Архимед ОткрытДревнегреческий ученый. Открытие тринадцати полуправильных выпу...
ТЕЛА АРХИМЕДА –полуправильные однородные выпуклые многогранники Архимедовыми...
Первую группу составляют пять многогранников, которые получаются из пяти плат...
усечённый тетраэдр	 усекаем вершины тетраэдра на одну треть ребра, так что ст...
усечённый гексаэдр Усекаем вершины куба так, чтобы сторона правильного треуг...
усеченный октаэдр усекаем вершины октаэдра на одну треть ребра. так чтобы сто...
усечённый додекаэдр усекаем вершины додекаэдра . так чтобы сторона правильног...
усеченный икосаэдр усекаем вершины икосаэдра на одну треть ребра, так чтобы...
Вторую группу составляют два тела, называемых квазиправильными многогранникам...
 кубоктаэдр Усекаем вершины куба или икосаэдра на половину ребра
		икосододекаэдр	 усекаем вершины икосаэдра или додекаэдра на половину ребра
В третью группу входят ромбокубоктаэдр, который иногда называют малым ромбок...
малый ромбокубоктаэдром усекаются боковые ребра, ребра верхнего и нижнего осн...
Большой ромбокубоктаэдром усекаются боковые ребра, ребра верхнего и нижнего о...
Ромбоусечённый икосододекаэдр усекаются ребра и вершины додекаэдра
 ромбоикосододекаэдр усекаются ребра и вершины додекаэдра
В четвертую группу входят две курносые модификации - курносый куб и курносый...
Курносый куб
Курносый додекаэдр
Пятая группа состоит из единственного многогранника -псевдоромбкубоктаэдра от...
использование форм правильных многогранников в природе «Природа говорит языко...
Правильные многогранники существовали на Земле задолго до появления на ней че...
Многие формы звездчатых многогранников подсказывает сама природа. Снежинки —...
Правильные многогранники и живая природа Правильные многогранники встречаются...
использование форм правильных многогранников человеком «Радость видеть и пони...
«Кубок Кеплера»   	 Иоганн Кеплер, для которого правильные многогранники были...
Год за годом учёный уточнял свои наблюдения, перепроверял данные коллег, но,...
«Икосаэдро-додекаэдровая структура Земли» Идеи Платона и Кеплера о связи прав...
Искусство и правильные многогранники Большой интерес к формам правильных мног...
"Тайная вечеря" С. Дали
Знаменитый художник, увлекавшийся геометрией Альбрехт Дюрер (1471- 1528) , в...
вывод Итак, к пяти правильным Платоновым и пяти почти правильным, то есть звё...
Библиография Большая Советская энциклопедия,т.13 М. Венниджер «Модели многогр...
72 1

Описание презентации по отдельным слайдам:

№ слайда 1 БОЛЬШОЙ ДОДЕКАЭДР Грани большого додекаэдра - пересекающиеся пятиугольники. В
Описание слайда:

БОЛЬШОЙ ДОДЕКАЭДР Грани большого додекаэдра - пересекающиеся пятиугольники. Вершины большого додекаэдра совпадают с вершинами описанного икосаэдра. Большой додекаэдр был впервые описан Луи Пуансо в 1809 г.

№ слайда 2 БОЛЬШОЙ ЗВЕЗДЧАТЫЙ ДОДЕКАЭДР Грани большого звездчатого додекаэдра - пентагра
Описание слайда:

БОЛЬШОЙ ЗВЕЗДЧАТЫЙ ДОДЕКАЭДР Грани большого звездчатого додекаэдра - пентаграммы, как и у малого звездчатого додекаэдра. У каждой вершины соединяются три грани. Вершины большого звездчатого додекаэдра совпадают с вершинами описанного додекаэдра. Большой звездчатый додекаэдр был впервые описан Кеплером в 1619 г.

№ слайда 3 Мир правильных многогранников «Правильных выпуклых многогранников вызывающе м
Описание слайда:

Мир правильных многогранников «Правильных выпуклых многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук» Льюис Кэрролл

№ слайда 4 Введение Цель работы – рассмотреть основные этапы развития учения о правильны
Описание слайда:

Введение Цель работы – рассмотреть основные этапы развития учения о правильных многогранниках. Задачи: Разобрать понятия - правильные многогранники - и их виды; - полуправильные многогранники - и их виды; - звёздчатые тела и их виды Ознакомиться с историей правильных многогранников Рассмотреть применение форм правильных многогранников в природе и человеком. -

№ слайда 5 Великие ученые и правильные многогранники «На разных этапах развития математи
Описание слайда:

Великие ученые и правильные многогранники «На разных этапах развития математики , вплоть до нашего времени геометры возвращались к теории выпуклых многогранников и открывали в ней новые фундаментальные факты». Л.А.Люстерник

№ слайда 6
Описание слайда:

№ слайда 7 Многогранники - тела, ограниченные плоскими многоугольниками, окружают нас п
Описание слайда:

Многогранники - тела, ограниченные плоскими многоугольниками, окружают нас повсюду. Многогранные формы мы видим ежедневно: книга, комната, гранённый карандаш. Среди разнообразных форм многогранников выделяют правильные многогранники.

№ слайда 8 Правильные многогранники- платоновы тела и их виды Выпуклый многогранник назы
Описание слайда:

Правильные многогранники- платоновы тела и их виды Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер.

№ слайда 9  ПЛАТОНОВЫ ТЕЛА
Описание слайда:

ПЛАТОНОВЫ ТЕЛА

№ слайда 10 Платон 428 (427) – 348 (347) гг. до нашей эры. Правильные многогранники иног
Описание слайда:

Платон 428 (427) – 348 (347) гг. до нашей эры. Правильные многогранники иногда называют Платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем , философом Древней Греции Платоном

№ слайда 11 «Правильные многогранники в философской картине мира Платона» Платон считал,
Описание слайда:

«Правильные многогранники в философской картине мира Платона» Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества - твёрдым, жидким, газообразным и пламенным. Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим. Это была одна из первых попыток ввести в науку идею систематизации.

№ слайда 12 Согласно философии Платона огонь тетраэдр вода икосаэдр воздух октаэдр земля
Описание слайда:

Согласно философии Платона огонь тетраэдр вода икосаэдр воздух октаэдр земля гексаэдр вселенная додекаэдр

№ слайда 13 ЕВКЛИД Древнегреческий мыслитель. Жил в третьем веке до н.э. В Александрии.
Описание слайда:

ЕВКЛИД Древнегреческий мыслитель. Жил в третьем веке до н.э. В Александрии. «Начала» знаменитый 13-томный труд Евклида. В нём была изложена вся известная к тому времени геометрия. 13 книга «Начал» - это теория правильных многогранников является вершиной стереометрии у Евклида

№ слайда 14 Всего существует пять видов правильных выпуклых многогранников. Их гранями я
Описание слайда:

Всего существует пять видов правильных выпуклых многогранников. Их гранями являются правильные треугольники, правильные четырёхугольники (квадраты) и правильные пятиугольники Названия этих многогранников пришли из Древней Греции, и в них указывается число граней: «эдра» - грань «тетра» - 4 «гекса» - 6 «окта» - 8 «икоса» - 20 «додека» - 12

№ слайда 15 ТЕТРАЭДР Тетраэдр – представитель платоновых тел, то есть правильных выпуклых
Описание слайда:

ТЕТРАЭДР Тетраэдр – представитель платоновых тел, то есть правильных выпуклых многогранников. Поверхность тетраэдра состоит из четырех равных равносторонних треугольников, сходящихся в каждой вершине по три.

№ слайда 16 ГЕКСАЭДР (КУБ)			 Гексаэдр или куб– представитель платоновых тел, то есть п
Описание слайда:

ГЕКСАЭДР (КУБ) Гексаэдр или куб– представитель платоновых тел, то есть правильных выпуклых многогранников. Куб имеет шесть равных квадратных граней, сходящихся в каждой вершине по три.

№ слайда 17 ОКТАЭДР Октаэдр – представитель семейства платоновых тел, то есть правильных
Описание слайда:

ОКТАЭДР Октаэдр – представитель семейства платоновых тел, то есть правильных выпуклых многогранников. Поверхность октаэдра состоит из восьми равных треугольников сходящихся в каждой вершине по четыре.

№ слайда 18 ДОДЕКАЭДР Додекаэдр – представитель семейства платоновых тел. Додекаэдр имеет
Описание слайда:

ДОДЕКАЭДР Додекаэдр – представитель семейства платоновых тел. Додекаэдр имеет двенадцать равных пятиугольных граней, сходящихся в вершинах по три. Этот многогранник замечателен своими тремя звездчатыми формами.

№ слайда 19 ИКОСАЭДР Икосаэдр – представитель платоновых тел. Поверхность икосаэдра сост
Описание слайда:

ИКОСАЭДР Икосаэдр – представитель платоновых тел. Поверхность икосаэдра состоит из двадцати равных равносторонних треугольников, сходящихся в каждой вершине по пять. Икосаэдр имеет одну звездчатую форму.

№ слайда 20 формула Эйлера для правильных многогранников «Некоторые из его простейших отк
Описание слайда:

формула Эйлера для правильных многогранников «Некоторые из его простейших открытий таковы, - писал про Эйлера Г.С. Коксетер, один из крупнейших современных геометров, - что можно представить себе дух Евклида, вопрошающий: «Почему при жизни на Земле я не додумался до этого?»»

№ слайда 21 Российский ученый, математик, механик, физик и астроном. По происхождению шв
Описание слайда:

Российский ученый, математик, механик, физик и астроном. По происхождению швейцарец. В 1726 был приглашен в Петербургскую Академию Наук и переехал в 1727 в Россию. Леонард Эйлер (1707-1783) Леонард Эйлер

№ слайда 22 Формула Эйлера (для правильных выпуклых многогранников): Г + В – Р = 2 « В лю
Описание слайда:

Формула Эйлера (для правильных выпуклых многогранников): Г + В – Р = 2 « В любом простом выпуклом многограннике число вершин плюс число граней и минус число ребер равно двум»

№ слайда 23 Г + В – Р = 2 			 Кол-во граней Кол-во вершин Кол-во ребер Вид грани Тетраэдр
Описание слайда:

Г + В – Р = 2 Кол-во граней Кол-во вершин Кол-во ребер Вид грани Тетраэдр 4 4 6 Куб 6 8 12 Октаэдр 8 6 12 Додекаэдр 12 20 30 Икосаэдр 20 12 30

№ слайда 24 ФОРМУЛЫ ДЛЯ ПРАВИЛЬНЫХ МНОГОГРАННИКОВ Правильные многогранники ОБЪЕМ ПЛОЩАДЬ
Описание слайда:

ФОРМУЛЫ ДЛЯ ПРАВИЛЬНЫХ МНОГОГРАННИКОВ Правильные многогранники ОБЪЕМ ПЛОЩАДЬ ПОВЕРХНОСТИ Тетраэдр V=(a³√2)/12 S= a²√3 Куб V=(a³√2)/12 S=6a² Октаэдр V=(a³√2)/12 S=2a²√3 Додекаэдр V= a³(15+7√5)/4 S=3a²√5(5+2√5) Икосаэдр V=5a³(3+√5)/12 S=5a²√3

№ слайда 25 Развертки правильных многогранников Развёртка - развёрнутая на плоскости пове
Описание слайда:

Развертки правильных многогранников Развёртка - развёрнутая на плоскости поверхность геометрического тела.

№ слайда 26  Развёртки ( многогранная поверхность ) тетраэдра
Описание слайда:

Развёртки ( многогранная поверхность ) тетраэдра

№ слайда 27 Развёртка ( многогранная поверхность ) гексаэдра (куба)
Описание слайда:

Развёртка ( многогранная поверхность ) гексаэдра (куба)

№ слайда 28 Развёртка( многогранная поверхность ) октаэдра
Описание слайда:

Развёртка( многогранная поверхность ) октаэдра

№ слайда 29 Развёртка( многогранная поверхность ) 	додекаэдра
Описание слайда:

Развёртка( многогранная поверхность ) додекаэдра

№ слайда 30 Развёртка( многогранная поверхность ) икосаэдра
Описание слайда:

Развёртка( многогранная поверхность ) икосаэдра

№ слайда 31 ТЕЛА ПУАНСО-КЕПЛЕРА – звездчатые многогранники (правильные невыпуклые многогр
Описание слайда:

ТЕЛА ПУАНСО-КЕПЛЕРА – звездчатые многогранники (правильные невыпуклые многогранники). Тела Пуансо-Кеплера получаются «озвездыванием» Платонова тела, то есть продлением его граней до пересечения друг с другом, и поэтому называются звёздчатыми.

№ слайда 32 ТЕЛА ПУАНСО-КЕПЛЕРА
Описание слайда:

ТЕЛА ПУАНСО-КЕПЛЕРА

№ слайда 33 Иоганн Кеплер (1571 – 1630 гг.) Немецкий астроном. В 1619 году описал два зве
Описание слайда:

Иоганн Кеплер (1571 – 1630 гг.) Немецкий астроном. В 1619 году описал два звездчатых многогранника: большой звездчатый додекаэдр и малый звездчатый додекаэдр Занимался теорией полуправильных выпуклых многогранников

№ слайда 34 ТЕЛА АРХИМЕДА ТЕЛА АРХИМЕДА - полуправильные многогранники, описанные ещё уч
Описание слайда:

ТЕЛА АРХИМЕДА ТЕЛА АРХИМЕДА - полуправильные многогранники, описанные ещё ученым древней Греции Архимедом , они получаются из Платоновых тел либо «отсечением углов» либо «отсечением ребер». Интересно, что две тысячи лет считалось, что архимедовых тел всего 13, и лишь 1957 году русский математик В.Г.Ашкинузе открыл четырнадцатый полуправильный многогранник.

№ слайда 35 Архимед ОткрытДревнегреческий ученый. Открытие тринадцати полуправильных выпу
Описание слайда:

Архимед ОткрытДревнегреческий ученый. Открытие тринадцати полуправильных выпуклых многогранников приписывается Архимеду, впервые перечислившего их в недошедшей до нас работе. Ссылки на эту работу имеются в трудах математика Паппа. около 287 – 212 гг. до нашей эры

№ слайда 36 ТЕЛА АРХИМЕДА –полуправильные однородные выпуклые многогранники Архимедовыми
Описание слайда:

ТЕЛА АРХИМЕДА –полуправильные однородные выпуклые многогранники Архимедовыми телами называются выпуклые многогранники, все многогранные углы которых равны, а грани - правильные многоугольники нескольких типов (этим они отличаются от платоновых тел). Множество архимедовых тел можно разбить на пять групп.

№ слайда 37 Первую группу составляют пять многогранников, которые получаются из пяти плат
Описание слайда:

Первую группу составляют пять многогранников, которые получаются из пяти платоновых тел в результате их усечения: Первую группу составляют пять многогранников, которые получаются из пяти платоновых тел в результате их усечения:

№ слайда 38 усечённый тетраэдр	 усекаем вершины тетраэдра на одну треть ребра, так что ст
Описание слайда:

усечённый тетраэдр усекаем вершины тетраэдра на одну треть ребра, так что сторона правильного треугольника равнялась стороне правильного шестиугольника

№ слайда 39 усечённый гексаэдр Усекаем вершины куба так, чтобы сторона правильного треуг
Описание слайда:

усечённый гексаэдр Усекаем вершины куба так, чтобы сторона правильного треугольника равнялась стороне правильного восьмиугольника

№ слайда 40 усеченный октаэдр усекаем вершины октаэдра на одну треть ребра. так чтобы сто
Описание слайда:

усеченный октаэдр усекаем вершины октаэдра на одну треть ребра. так чтобы сторона квадрата равнялась стороне правильного шестиугольника

№ слайда 41 усечённый додекаэдр усекаем вершины додекаэдра . так чтобы сторона правильног
Описание слайда:

усечённый додекаэдр усекаем вершины додекаэдра . так чтобы сторона правильного треугольника равнялась стороне правильного восьмиугольника

№ слайда 42 усеченный икосаэдр усекаем вершины икосаэдра на одну треть ребра, так чтобы
Описание слайда:

усеченный икосаэдр усекаем вершины икосаэдра на одну треть ребра, так чтобы сторона правильного шестиугольника равнялась стороне правильного пятиугольника

№ слайда 43 Вторую группу составляют два тела, называемых квазиправильными многогранникам
Описание слайда:

Вторую группу составляют два тела, называемых квазиправильными многогранниками. Это название означает, что гранями этого многогранника являются правильные многоугольники всего двух типов, причем каждая грань одного типа окружена гранями другого типа. Эти два тела называются кубоктаэдр и икосододекаэдр. квазиправильные многогранники

№ слайда 44  кубоктаэдр Усекаем вершины куба или икосаэдра на половину ребра
Описание слайда:

кубоктаэдр Усекаем вершины куба или икосаэдра на половину ребра

№ слайда 45 		икосододекаэдр	 усекаем вершины икосаэдра или додекаэдра на половину ребра
Описание слайда:

икосододекаэдр усекаем вершины икосаэдра или додекаэдра на половину ребра

№ слайда 46 В третью группу входят ромбокубоктаэдр, который иногда называют малым ромбок
Описание слайда:

В третью группу входят ромбокубоктаэдр, который иногда называют малым ромбокубоктаэдром и ромбоикосододекаэдр, который иногда называют малым ромбоикосододекаэдром. В эту группу входят ромбоусеченный кубоктаэдр иногда называемый большим ромбокубоктаэдром и ромбоусеченный икосододекаэдр называемый также большим ромбоикосододекаэдром, которые получаются из кубоктаэдра и икосододекаэдра при другом варианте усечения.

№ слайда 47 малый ромбокубоктаэдром усекаются боковые ребра, ребра верхнего и нижнего осн
Описание слайда:

малый ромбокубоктаэдром усекаются боковые ребра, ребра верхнего и нижнего основания гексаэдра (куба) и вершины

№ слайда 48 Большой ромбокубоктаэдром усекаются боковые ребра, ребра верхнего и нижнего о
Описание слайда:

Большой ромбокубоктаэдром усекаются боковые ребра, ребра верхнего и нижнего основания гексаэдра (куба)

№ слайда 49 Ромбоусечённый икосододекаэдр усекаются ребра и вершины додекаэдра
Описание слайда:

Ромбоусечённый икосододекаэдр усекаются ребра и вершины додекаэдра

№ слайда 50  ромбоикосододекаэдр усекаются ребра и вершины додекаэдра
Описание слайда:

ромбоикосододекаэдр усекаются ребра и вершины додекаэдра

№ слайда 51 В четвертую группу входят две курносые модификации - курносый куб и курносый
Описание слайда:

В четвертую группу входят две курносые модификации - курносый куб и курносый додекаэдр. Для них характерно несколько повернутое положение граней. В результате эти многогранники, в отличие от предыдущих, не имеют плоскостей симметрии, но имеют оси симметрии. Так как плоскостей симметрии нет, то зеркальное отражение такого тела не совпадает с исходным телом, и поэтому существуют по две формы каждого из них - "правая" и "левая", отличающиеся так же, как правая и левая руки.

№ слайда 52 Курносый куб
Описание слайда:

Курносый куб

№ слайда 53 Курносый додекаэдр
Описание слайда:

Курносый додекаэдр

№ слайда 54 Пятая группа состоит из единственного многогранника -псевдоромбкубоктаэдра от
Описание слайда:

Пятая группа состоит из единственного многогранника -псевдоромбкубоктаэдра открытого лишь в XX веке. Он может быть получен из ромбокубоктаэдра, если повернуть одну из восьмиугольных чаш на 45°.,

№ слайда 55 использование форм правильных многогранников в природе «Природа говорит языко
Описание слайда:

использование форм правильных многогранников в природе «Природа говорит языком математики; буквы этого языка - круги, треугольники и иные математические фигуры» Галилео Галилей

№ слайда 56 Правильные многогранники существовали на Земле задолго до появления на ней че
Описание слайда:

Правильные многогранники существовали на Земле задолго до появления на ней человека, но только геометр усмотрел в них порядок и систему задолго до того , как физик проник в тайну строения вещества.

№ слайда 57 Многие формы звездчатых многогранников подсказывает сама природа. Снежинки —
Описание слайда:

Многие формы звездчатых многогранников подсказывает сама природа. Снежинки — это звездчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.

№ слайда 58 Правильные многогранники и живая природа Правильные многогранники встречаются
Описание слайда:

Правильные многогранники и живая природа Правильные многогранники встречаются в живой природе. Например, скелет одноклеточного организма феодарии ( Circjgjnia icosahtdra ) по форме напоминает икосаэдр Чем же вызвана такая природная геометризация феодарий? По-видимому, тем, что из всех многогранников с тем же числом граней именно икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи.

№ слайда 59 использование форм правильных многогранников человеком «Радость видеть и пони
Описание слайда:

использование форм правильных многогранников человеком «Радость видеть и понимать есть самый прекрасный дар природы» Альберт Эйнштейн

№ слайда 60 «Кубок Кеплера»   	 Иоганн Кеплер, для которого правильные многогранники были
Описание слайда:

«Кубок Кеплера»   Иоганн Кеплер, для которого правильные многогранники были любимым предметом изучения, предположил, что существует связь между пятью правильными многогранниками и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера. В неё, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера. Результаты своих вычислений учёный опубликовал в книге «Тайна мироздания». Он считал, что тайна Вселенной раскрыта.

№ слайда 61 Год за годом учёный уточнял свои наблюдения, перепроверял данные коллег, но,
Описание слайда:

Год за годом учёный уточнял свои наблюдения, перепроверял данные коллег, но, наконец, нашёл в себе силы отказаться от заманчивой гипотезы. Однако её следы просматриваются в третьем законе Кеплера, где говориться о кубах средних расстояний от Солнца. Сегодня можно с уверенностью утверждать, что расстояния между планетами и их число никак не связаны с многогранниками. Конечно, структура Солнечной системы не является случайной, но истинные причины, по которым она устроена так, а не иначе, до сих пор не известны. Идеи Кеплера оказались ошибочными, но без гипотез, иногда самых неожиданных, казалось бы, бредовых, не может существовать наука.

№ слайда 62 «Икосаэдро-додекаэдровая структура Земли» Идеи Платона и Кеплера о связи прав
Описание слайда:

«Икосаэдро-додекаэдровая структура Земли» Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80-х гг. высказали московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник.

№ слайда 63 Искусство и правильные многогранники Большой интерес к формам правильных мног
Описание слайда:

Искусство и правильные многогранники Большой интерес к формам правильных многогранников проявляли также скульпторы, архитекторы, художники. Их всех поражало совершенство, гармония многогранников. Леонардо да Винчи (1452 – 1519) увлекался теорией многогранников и часто изображал их на своих полотнах. Сальвадор Дали на картине «Тайная вечеря» изобразил И. Христа со своими учениками на фоне огромного прозрачного додекаэдра.

№ слайда 64 "Тайная вечеря" С. Дали
Описание слайда:

"Тайная вечеря" С. Дали

№ слайда 65 Знаменитый художник, увлекавшийся геометрией Альбрехт Дюрер (1471- 1528) , в
Описание слайда:

Знаменитый художник, увлекавшийся геометрией Альбрехт Дюрер (1471- 1528) , в известной гравюре ''Меланхолия ''. На переднем плане изобразил додекаэдр.  

№ слайда 66 вывод Итак, к пяти правильным Платоновым и пяти почти правильным, то есть звё
Описание слайда:

вывод Итак, к пяти правильным Платоновым и пяти почти правильным, то есть звёздчатым, телам Кеплера-Пуансо надо прибавить ещё четырнадцать полуправильных тел Архимеда-Ашкинузе. Если про правильные - обычные и звёздчатые многогранники Огюстен Коши в 1812 году строго доказал, что их может быть только десять, то касательно полуправильных, известно лишь что 14 обычных дают 51 звёздчатый. Но исчерпывается ли этим «полуправильное многообразие» - этого сегодняшние геометры не знают.

№ слайда 67 Библиография Большая Советская энциклопедия,т.13 М. Венниджер «Модели многогр
Описание слайда:

Библиография Большая Советская энциклопедия,т.13 М. Венниджер «Модели многогранников», изд. «Мир», Москва, 1974 г. Журнал «Квант», №4 ,1987 г. К. Левитин «Геометрическая рапсодия», изд. «Знание», Москва, 1984 г. Интернетресурсы:

№ слайда 68
Описание слайда:

№ слайда 69
Описание слайда:

№ слайда 70
Описание слайда:

№ слайда 71
Описание слайда:

№ слайда 72
Описание слайда:

Краткое описание документа:

. Данная  презентация  позволит  учащимся  проследить весь  ход развития теории  о  правильных  многогранниках,  начиная  примерно с 400 лет  до нашей  эры  до  сегодняшних   дней, рассмотреть  их  свойства, увидеть  правильные  многогранники в жизни,  в  природе, в   искусстве, повторить  и закрепить  имеющиеся  знания.

Основное содержание:

  - великие  ученые  и  правильные  многогранники;

- правильные  многогранники - платоновы  тела  и  их  виды;

-  формула  Эйлера  для  правильных  многогранников;

-  развертки  правильных  многогранников;

-  полуправильные  многогранники  -  тела  Архимеда  и  их  виды; звёздчатые  тела  -  тела  Пуансо-Кеплера;

-   полуправильные  многогранники  -  тела  Архимеда  и  их  виды;

-  использование  форм  правильных  многогранников  в  природе;

-  использование  форм  правильных  многогранников  человеком.

 

 

Автор
Дата добавления 08.11.2014
Раздел Математика
Подраздел Презентации
Просмотров412
Номер материала 109456
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх