Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Презентации / Презентация по математике на тему "Задачи по теории вероятностей" (9 и 11 класс)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Презентация по математике на тему "Задачи по теории вероятностей" (9 и 11 класс)

библиотека
материалов
ЗАДАЧИ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ
Определение вероятности Вероятностью события A называют отношение числа m бла...
Свойства вероятности Свойство 1. Вероятность достоверного события равна едини...
Решение. Игральные кости – это кубики с 6 гранями. На первом кубике может вып...
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятно...
В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, о...
В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдит...
Решение: 100 + 8 = 108 – сумок всего (качественных и со скрытыми дефектами)....
В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спорт...
Научная конференция проводится в 5 дней. Всего запланировано 75 докладов − пе...
Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений − по...
На семинар приехали 3 ученых из Норвегии, 3 из России и 4 из Испании. Порядок...
Перед началом первого тура чемпионата по бадминтону участников разбивают на и...
В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопр...
В сборнике билетов по математике всего 25 билетов, в 10 из них встречается во...
На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 8 прыгуно...
Решение: Обозначим право владения первой мячом команды "Меркурий" в матче с о...
Решение. В сумме на двух кубиках должно выпасть 8 очков. Это возможно, если б...
Решение. При условии, что у Тоши выпало 3 очка, возможны следующие варианты:...
Решение: Всего команд 20, групп – 5. В каждой группе – 4 команды. Итак, всего...
Вася, Петя, Коля и Лёша бросили жребий – кому начинать игру. Найдите вероятно...
На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случа...
Решение: 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 Р = = 0,3 Ответ: 0,3. Какова...
Решение: Обозначим право владения первой мячом команды «Физик" в матче с одно...
Решение: В сумме должно выпасть 5 очков. Это возможно, если будут следующие к...
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятно...
Решение: Общее количество выступающих на фестивале групп для ответа на вопрос...
Решение: Из 5000 тысяч новорожденных 5000 − 2512 = 2488 девочек. Поэтому част...
Решение: В самолете 12 + 18 = 30 мест удобны пассажиру В., а всего в самолете...
Решение: Всего в запасную аудиторию направили 250 − 120 − 120 = 10 человек. П...
Решение: Пусть один из близнецов находится в некоторой группе. Вместе с ним в...
Решение: Машин желтого цвета с черными надписями 23, всего машин 50. Поэтому...
Решение: На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что т...
Решение: В кармане было 4 конфеты, а выпала одна конфета. Поэтому вероятность...
34 1

Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Описание презентации по отдельным слайдам:

№ слайда 1 ЗАДАЧИ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ
Описание слайда:

ЗАДАЧИ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ

№ слайда 2 Определение вероятности Вероятностью события A называют отношение числа m бла
Описание слайда:

Определение вероятности Вероятностью события A называют отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместимых событий, которые могут произойти в результате одного испытания или наблюдения: Пусть k – количество бросков монеты, тогда количество всевозможных исходов: n = 2k. Пусть k – количество бросков кубика, тогда количество всевозможных исходов: n = 6k. Р = n m

№ слайда 3 Свойства вероятности Свойство 1. Вероятность достоверного события равна едини
Описание слайда:

Свойства вероятности Свойство 1. Вероятность достоверного события равна единице: Р(А) = 1. Свойство 2. Вероятность невозможного события равна нулю: Р(А) = 0. Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей: 0 ≤ Р(А) ≤ 1.

№ слайда 4 Решение. Игральные кости – это кубики с 6 гранями. На первом кубике может вып
Описание слайда:

Решение. Игральные кости – это кубики с 6 гранями. На первом кубике может выпасть  1, 2, 3, 4, 5 или  6 очков. Каждому варианту выпадения очков соответствует 6 вариантов выпадения очков на втором кубике. Т.е. всего различных вариантов 6×6 = 36. Варианты (исходы эксперимента) будут такие: 1; 1  1; 2  1; 3  1; 4  1; 5  1; 6 2; 1  2; 2  2; 3  2; 4  2; 5  2; 6 и т.д. .............................. 6; 1  6; 2  6; 3  6; 4  6; 5  6; 6 Подсчитаем количество исходов (вариантов), в которых сумма очков двух кубиков равна 8. 2; 6   3; 5;  4; 4   5; 3   6; 2.   Всего 5 вариантов. Найдем вероятность:   5/36 = 0,138 ≈ 0,14. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых. Ответ: 0,14.

№ слайда 5 В случайном эксперименте симметричную монету бросают дважды. Найдите вероятно
Описание слайда:

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз. Решение. Всего 4 варианта:  о; о    о; р    р; р    р; о.     Благоприятных 2:   о; р  и р; о.   Вероятность равна 2/4 = 1/2 = 0,5. Ответ: 0,5.

№ слайда 6 В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, о
Описание слайда:

В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные − из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая. Решение. Всего участвует 20 спортсменок, из которых 20 – 8 – 7 = 5 спортсменок из Китая. Вероятность того, что спортсменка, выступающая первой, окажется из Китая, равна 5/20 = 1/4 = 0,25. Ответ: 0,25.

№ слайда 7 В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдит
Описание слайда:

В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает. Решение: 1000 – 5 = 995 – насосов не подтекают. Вероятность того, что один случайно выбранный для контроля насос не подтекает, равна 995/1000 = 0,995. Ответ: 0,995.

№ слайда 8 Решение: 100 + 8 = 108 – сумок всего (качественных и со скрытыми дефектами).
Описание слайда:

Решение: 100 + 8 = 108 – сумок всего (качественных и со скрытыми дефектами). Вероятность того, что купленная сумка окажется качественной, равна 100/108 = 0,(925) ≈ 0,93. Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых. Ответ: 0,93.

№ слайда 9 В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спорт
Описание слайда:

В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 − из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции. Ответ: 0,36. Решение: Всего участвует 4 + 7 + 9 + 5 = 25 спортсменов. Вероятность того, что спортсмен, который выступает последним, окажется из Швеции, равна 9/25 = 36/100 = 0,36.

№ слайда 10 Научная конференция проводится в 5 дней. Всего запланировано 75 докладов − пе
Описание слайда:

Научная конференция проводится в 5 дней. Всего запланировано 75 докладов − первые три дня по 17 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции? Ответ: 0,16. Решение: В последний день конференции запланировано (75 – 17 × 3) : 2 = 12 докладов. Вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 12/75 = 4/25 = 0,16.

№ слайда 11 Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений − по
Описание слайда:

Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений − по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса? Ответ: 0,225. 285923 Решение: В третий день конкурса запланировано (80 – 8) : 4 = 18 выступлений. Вероятность того, что выступление представителя России состоится в третий день конкурса, равна 18/80 = 9/40 = 225/1000 = 0,225.

№ слайда 12 На семинар приехали 3 ученых из Норвегии, 3 из России и 4 из Испании. Порядок
Описание слайда:

На семинар приехали 3 ученых из Норвегии, 3 из России и 4 из Испании. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад ученого из России. Ответ: 0,3. Решение: Всего участвует 3 + 3 + 4 = 10 ученых. Вероятность того, что восьмым окажется доклад ученого из России, равна 3/10 = 0,3.

№ слайда 13 Перед началом первого тура чемпионата по бадминтону участников разбивают на и
Описание слайда:

Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России? Ответ: 0,36. Решение: Нужно учесть, что Руслан Орлов должен играть с каким-либо бадминтонистом из России. И сам Руслан Орлов тоже из России. Вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России, равна 9/25 = 36/100 = 0,36.

№ слайда 14 В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопр
Описание слайда:

В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике. Ответ: 0,2. Решение: Вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике, равна 11/55 =1/5 = 0,2.

№ слайда 15 В сборнике билетов по математике всего 25 билетов, в 10 из них встречается во
Описание слайда:

В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам. Ответ: 0,6. Решение: 25 – 10 = 15 – билетов не содержат вопрос по неравенствам. Вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам, равна 15/25 = 3/5 = 0,6.

№ слайда 16 На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 8 прыгуно
Описание слайда:

На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 8 прыгунов из России и 9 прыгунов из Парагвая. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что шестым будет выступать прыгун из Парагвая. Ответ: 0,36. 285928 Решение: Всего участвует 25 спортсменов. Вероятность того, что шестым будет выступать прыгун из Парагвая, равна 9/25 = 36/100 = 0,36.

№ слайда 17 Решение: Обозначим право владения первой мячом команды "Меркурий" в матче с о
Описание слайда:

Решение: Обозначим право владения первой мячом команды "Меркурий" в матче с одной из других трех команд как "Решка". Тогда право владения второй мячом этой команды – «Орел». Итак, напишем все возможные исходы бросания монеты три раза. «О» – орел, «Р» – решка. Итак, всего исходов получилось 8, нужных нам – 1, следовательно, вероятность выпадения нужного исхода 1/8 = 0,125. Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд будет первая владеть мячом. Команда "Меркурий" по очереди играет с командами "Марс", "Юпитер", "Уран". Найдите вероятность того, что во всех матчах право владеть мячом выиграет команда "Меркурий"? Ответ: 0,125. «Марс» «Юпитер» «Уран» О О О О О Р О Р О О Р Р Р О О Р О Р Р Р О Р Р Р

№ слайда 18 Решение. В сумме на двух кубиках должно выпасть 8 очков. Это возможно, если б
Описание слайда:

Решение. В сумме на двух кубиках должно выпасть 8 очков. Это возможно, если будут следующие комбинации: 2 и 6 6 и 2 3 и 5 5 и 3 4 и 4 Всего 5 вариантов. Подсчитаем количество исходов (вариантов), в которых при первом броске выпало 2 очка. Такой вариант 1. Найдем вероятность:   1/5 = 0,2. Даша дважды бросает игральный кубик. В сумме у нее выпало 8 очков. Найдите вероятность того, что при первом броске выпало 2 очка. Ответ: 0,2.

№ слайда 19 Решение. При условии, что у Тоши выпало 3 очка, возможны следующие варианты:
Описание слайда:

Решение. При условии, что у Тоши выпало 3 очка, возможны следующие варианты: 3 и 1 3 и 2 3 и 3 3 и 4 3 и 5 3 и 6 Всего 6 вариантов. Подсчитаем количество исходов, в которых Гоша не выиграет, т.е. наберет 1, 2 или 3 очка. Таких вариантов 3. Найдем вероятность:   3/6 = 0,5. Тоша и Гоша играют в кости. Они бросают кубик по одному разу. Выигрывает тот, кто выбросил больше очков. Если очков выпало поровну, то наступает ничья. Первым бросил Тоша, у него выпало 3 очка. Найдите вероятность того, что Гоша не выиграет. Ответ: 0,5.

№ слайда 20 Решение: Всего команд 20, групп – 5. В каждой группе – 4 команды. Итак, всего
Описание слайда:

Решение: Всего команд 20, групп – 5. В каждой группе – 4 команды. Итак, всего исходов получилось 20, нужных нам – 4, значит, вероятность выпадения нужного исхода 4/20 = 0,2. В чемпионате мира участвует 20 команд. С помощью жребия их нужно разделить на пять групп по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:      1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5. Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется в третьей группе.    Ответ: 0,2.

№ слайда 21 Вася, Петя, Коля и Лёша бросили жребий – кому начинать игру. Найдите вероятно
Описание слайда:

Вася, Петя, Коля и Лёша бросили жребий – кому начинать игру. Найдите вероятность того, что начинать игру должен будет Петя. Ответ: 0,25. Решение: Вероятность того, что игру должен будет начинать любой из мальчиков равна 1/4 = 0,25. В том числе и для Пети.

№ слайда 22 На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случа
Описание слайда:

На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной? Ответ: 0,5. Решение: Количество четных цифр на клавиатуре равно 5: 0, 2, 4, 6, 8 всего же цифр на клавиатуре 10, тогда вероятность что случайно нажатая цифра будет чётной равна 5/10 = 0,5.

№ слайда 23 Решение: 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 Р = = 0,3 Ответ: 0,3. Какова
Описание слайда:

Решение: 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 Р = = 0,3 Ответ: 0,3. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три? 3 10

№ слайда 24 Решение: Обозначим право владения первой мячом команды «Физик" в матче с одно
Описание слайда:

Решение: Обозначим право владения первой мячом команды «Физик" в матче с одной из трех команд как "Орел". Тогда право владения второй мячом этой команды – «Решка». Итак, запишем все возможные исходы бросания монеты три раза в таблице: «О» – орел, «Р» – решка. Итак, всего исходов получилось 23 = 8, нужных нам – 3, следовательно, вероятность выпадения нужного исхода равна: 3/8 = 0,375. Ответ: 0,375. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза. Ф/1 ОР ОР ОР ОР РО РО РО РО Ф/2 ОР ОР РО РО ОР ОР РО РО Ф/3 ОР РО ОР РО ОР РО ОР РО

№ слайда 25 Решение: В сумме должно выпасть 5 очков. Это возможно, если будут следующие к
Описание слайда:

Решение: В сумме должно выпасть 5 очков. Это возможно, если будут следующие комбинации: 1 и 4 4 и 1 2 и 3 3 и 2 Всего 4 варианта. Ответ: 4. Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «А = сумма очков равна 5»?

№ слайда 26 В случайном эксперименте симметричную монету бросают дважды. Найдите вероятно
Описание слайда:

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что наступит исход ОР (в первый раз выпадает орёл, во второй – решка). Решение. Всего 4 варианта:  о; о    о; р    р; р    р; о.     Благоприятных 1:   о; р.   Вероятность равна 1/4 = 0,25. Ответ: 0,25.

№ слайда 27 Решение: Общее количество выступающих на фестивале групп для ответа на вопрос
Описание слайда:

Решение: Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (Д – Дания, Ш –Швеция, Н – Норвегия): Д − Ш − Н Д − Н − Ш Ш − Н − Д Ш − Д − Н Н − Д − Ш Н − Ш − Д Дания находится после Швеции и Норвегии в двух случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна Р = 2/6 = 1/3 ≈ 0,33 Ответ: 0,33. На рок-фестивале выступают группы – по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых.

№ слайда 28 Решение: Из 5000 тысяч новорожденных 5000 − 2512 = 2488 девочек. Поэтому част
Описание слайда:

Решение: Из 5000 тысяч новорожденных 5000 − 2512 = 2488 девочек. Поэтому частота рождения девочек равна: 2488/5000 = 0,4976 ≈ 0,498 В некотором городе из 5000 появившихся на свет младенцев 2512 мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до тысячных. Ответ: 0,498.

№ слайда 29 Решение: В самолете 12 + 18 = 30 мест удобны пассажиру В., а всего в самолете
Описание слайда:

Решение: В самолете 12 + 18 = 30 мест удобны пассажиру В., а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В. достанется удобное место равна P = 30 : 300 = 0,1. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест. Ответ: 0,1.

№ слайда 30 Решение: Всего в запасную аудиторию направили 250 − 120 − 120 = 10 человек. П
Описание слайда:

Решение: Всего в запасную аудиторию направили 250 − 120 − 120 = 10 человек. Поэтому вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории, равна P = 10 : 250 = 0,04. На олимпиаде в вузе участников рассаживают по трём аудиториям. В первых двух по 120 человек, оставшихся проводят в запасную аудиторию в другом корпусе. При подсчёте выяснилось, что всего было 250 участников. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории. Ответ: 0,04.

№ слайда 31 Решение: Пусть один из близнецов находится в некоторой группе. Вместе с ним в
Описание слайда:

Решение: Пусть один из близнецов находится в некоторой группе. Вместе с ним в группе окажутся 12 человек из 25 оставшихся одноклассников. Вероятность того, что второй близнец окажется среди этих 12 человек, равна P = 12 : 25 = 0,48. В классе 26 человек, среди них два близнеца – Андрей и Сергей. Класс случайным образом делят на две группы по 13 человек в каждой. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе. Ответ: 0,48.

№ слайда 32 Решение: Машин желтого цвета с черными надписями 23, всего машин 50. Поэтому
Описание слайда:

Решение: Машин желтого цвета с черными надписями 23, всего машин 50. Поэтому вероятность того, что на случайный вызов приедет машина желтого цвета с черными надписями, равна: P = 23 : 50 = 0,46. В фирме такси в наличии 50 легковых автомобилей; 27 из них чёрные с жёлтыми надписями на бортах, остальные – жёлтые с чёрными надписями. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета с чёрными надписями. Ответ: 0,46.

№ слайда 33 Решение: На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что т
Описание слайда:

Решение: На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что турист П. полетит первым рейсом вертолёта, равна: P = 6 : 30 = 0,2. В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта. Ответ: 0,2.

№ слайда 34 Решение: В кармане было 4 конфеты, а выпала одна конфета. Поэтому вероятность
Описание слайда:

Решение: В кармане было 4 конфеты, а выпала одна конфета. Поэтому вероятность этого события равна одной четвертой. В кармане у Миши было четыре конфеты – «Грильяж», «Белочка», «Коровка» и «Ласточка», а так же ключи от квартиры. Вынимая ключи, Миша случайно выронил из кармана одну конфету. Найдите вероятность того, что потерялась конфета «Грильяж». Ответ: 0,25.


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Краткое описание документа:

Презентация "Задачи по теории вероятностей" будет полезна как учащимся 9 классов, так и учащимся 11 классов при подготовке к государственной итоговой аттестации. Презентация содержит определение классической вероятности, свойства вероятностей и решение 30 задач.

При подготовке к экзамену рекомендую использовать пособие: Корянов А.Г., Надежкина Н.В. Задания В10. Элементы теории вероятностей. Математика ЕГЭ 2014 (система задач из открытого банка заданий) с сайта www.alexlarin.net.

С уважением, ,Л.С. Коропец.

Автор
Дата добавления 25.01.2015
Раздел Математика
Подраздел Презентации
Просмотров757
Номер материала 337461
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх