Инфоурок / Математика / Другие методич. материалы / Применение опорных таблиц на уроках математики
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Законы экологии», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 21 ОКТЯБРЯ!

Конкурс "Законы экологии"

Применение опорных таблиц на уроках математики

библиотека
материалов

5-й класс.

Натуральные числа и их сравнение.


Цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. --- арабские

I, V, X, L, C, D, M, ------- римские

A, b, … ----- славянские



Натуральные числа (N): для счёта предметов.

1, 2, 3, 4, …, → ∞


Любое натуральное число можно записать с помощью 10 цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Числа, запись которых состоит из одного знака – однозначные.

Числа, запись которых состоит из двух знаков – двузначные и т.д.

hello_html_m323f89ba.gif

100 000 000 000

Млрд. млн. тыс. ед. десятичная запись

7825= 7∙ 1000+ 8 ∙ 100 + 2 ∙ 10 +5

миллиарды

миллионы

тысячи

единицы

Сотни миллиардов

Десятки миллиардов

Единицы миллиардов

Сотни миллионов

Десятки миллионов

Единицы миллионов

Сотни тысяч

Десятки тысяч

Единицы тысяч

Сотни

Десятки

Единицы



Изображение натуральных чисел.

hello_html_m3c62c67f.gifA(4) Bhello_html_m7d676a20.gif(7)

hello_html_m3c62c67f.gif

0 1 2 3 4 5 6 7 8


hello_html_59425e53.gif

Сравнение чисел (поразрядно): чем больше, тем правее hello_html_m53d4ecad.gif

19 > 14; 121>35; 489 > 431; 1281 >1095.

hello_html_3c8c84.gif

Чем меньше, тем левее

9< 14; 21<35; 489< 531; 1281 < 2395.

Сложение и вычитание натуральных чисел.

Сложение: →


Сложение 25 + 41 = 66

↑ ↑ ↑

слагаемые сумма


Законы сложения: 1) переместительный: a + b = b + a .

От перемены мест слагаемых сумма не меняется

Пример: 7+3=3+7=10

2) сочетательный: (a + b) + с = a + (b + с)

Чтобы прибавить к сумме двух чисел число, нужно к

первому числу прибавить сумму второго и третьего

чисел или в другом порядке (как удобнее).

Пример: (3+2) + 4 = 3 + (2 +4) = (3 + 4) + 2 = 9

5 + 4 = 3 + 6 = 7 + 2 = 9

3) a + 0 = a .

От прибавления нуля число не меняется.

Пример: 7 +0 = 7


Вычитание: ←


Вhello_html_714f043b.gifычитание: 96 – 41 = 55 hello_html_m1f1d677c.gif

hello_html_560669e1.gifhello_html_560669e1.gif

Уменьшаемое - вычитаемое = разность.

Разность двух чисел показывает, на сколько первое число больше второго, иными словами, на сколько второе число меньше первого.


  1. Для того, чтобы вычесть сумму из числа, можно сначала вычесть из этого числа первое слагаемое, а потом из полученной разности – второе слагаемое.

hello_html_2372e2aa.gifhello_html_313a26f4.gifhello_html_2372e2aa.gifhello_html_5082a2ca.gifhello_html_2372e2aa.gifhello_html_5082a2ca.gif

hello_html_6fcde119.gifhello_html_6fcde119.gifhello_html_6fcde119.gif - ( + ) =( - ) - = - -


12 – (3 + 2 ) = 12 – 5 = ( 12 -3 ) -2 = 12 – 3 – 2 = 7.

a –( b + с ) = ( a – b ) – с =( a – с) – b = a – b – с


  1. Чтобы из суммы вычесть число, можно вычесть его из одного слагаемого, а к полученной разности прибавить другое слагаемое.

( 6 + 3 ) – 2 =9- 2 = 6 + ( 3 – 2 ) = ( 6 – 2 ) + 3 = 7.

(a + b ) –с = a + ( b – с ) = ( a – с ) + b


  1. a – 0 = a . 4. a – a = 0.

Умножение и деление натуральных чисел, свойства умножения.


а · n = hello_html_m53d4ecad.gifa + a + … + a

hello_html_f5db513.gif

n раз

Умножить число а на натуральное число n означает найти сумму n слагаемых, каждое из которых равно a.


Умножение: 25 · 3 = 75.

↑ ↑ ↑

Множители = произведение Законы умножения:.

  1. переместительный (от перестановки множителей произведение не изменяется)

a · b = b · a .


2) сочетательный : a · ( b · с ) = ( a · b ) · c = ( a · c) · b .


3) a · 0 = 0.


4) a · 1 = a .


5) распределительный закон: a · (b + с) = a · b + a · b .


a · (b - с) = a · b - a · b .


Дhello_html_4b1b3a8c.gifеление: 48 : 4 = 12

↑ ↑

Делимое : делитель = частное

Частное показывает, во сколько раз делимое больше, чем делитель.


1) На нуль делить нельзя.

2) a : 1 = a.

3) a : a = 1.

4) 0 : a =0.









Квадрат и куб числа.


a² = a · a квадрат числа

таблица квадратов:

a

1

2

3

4

5

6

7

8

9

10

1

4

9

16

25

36

49

64

81

100


a³ = a · a · a куб числа


таблица кубов:


a

1

2

3

4

5

6

7

8

9

10

1

8

27

64

125

216

343

512

729

1000


Формулы.


S = v · t , S- путь, v – скорость, t- время.

V = s : t .

t = s : v


P= ( a + b ) · 2- периметр прямоугольника – сумма всех сторон

S = a · b – площадь прямоугольника – произведение смежных сторон

hello_html_m3a05dc85.gif

a


b


Phello_html_m71df0b64.gif = 4 · a – периметр квадрата hello_html_m6e38658a.gif

S = a² = a · a – площадь квадрата а


а


hello_html_m64d2c4f4.gifhello_html_m559a6e4f.gifа аааааааааааааааа


а V = аhello_html_m5d4c989e.gif= а · а ·а b в

а с

объём куба а

V = а · b · с

Объём параллелепипеда.


Диаграммы и графики


hello_html_m6d6a67f6.png





Круговая диаграмма.

Круг - 3600

30% от 3600 – это

30: 100 ∙ 3600= 1080









График


Год

1999

2000

2001

2002

2003

2004

2005

Производство чугуна, млн.тонн

160

200

180

240

220

200

290



hello_html_67b0a3f9.pngГод

Измерения углов. Транспортир.

Для измерения углов применяют транспортир.

Шкала транспортира – полуокружность.

Штрихи шкалы делят полуокружность на 180 долей.

Градус – это hello_html_3bf81042.gif доля полуокружности.

Каждое деление шкалы транспортира равно 1 градусу (10)

Прямой угол равен 900.

Острый угол – это угол меньше 900.

Тупой угол – это угол больше 900

Развёрнутый угол равен 1800




hello_html_45b22289.png

hello_html_a2dad76.gif


hello_html_m6a40967b.pnghello_html_m8810507.gifhello_html_m2f763ae4.png

hello_html_1c456432.png


hello_html_1931edca.gifhello_html_1931edca.gifhello_html_7c38e3af.pnghello_html_3b7dd82e.png

Деление с остатком.

hello_html_17cc0d73.gifhello_html_17cc0d73.gifhello_html_17cc0d73.gifhello_html_17cc0d73.gifhello_html_17cc0d73.gifhello_html_17cc0d73.gifhello_html_17cc0d73.gifhello_html_17cc0d73.gifhello_html_17cc0d73.gifhello_html_17cc0d73.gifhello_html_17cc0d73.gif



11:2=5(остаток1)



hello_html_3dfbe77e.gifhello_html_3dfbe77e.gifhello_html_3dfbe77e.gifhello_html_3dfbe77e.gifhello_html_3dfbe77e.gifhello_html_3dfbe77e.gifhello_html_3dfbe77e.gifhello_html_3dfbe77e.gifhello_html_3dfbe77e.gifhello_html_3dfbe77e.gif



10:4=2(остаток2)


hello_html_m451a81f5.gifhello_html_m451a81f5.gifhello_html_m451a81f5.gifhello_html_m451a81f5.gifhello_html_m451a81f5.gifhello_html_m451a81f5.gifhello_html_m451a81f5.gif



7:6=1(остаток1)


Остаток при делении всегда должен быть меньше делителя.




Обыкновенные дроби.

hello_html_1eab184c.png

Одна доля из пяти – это hello_html_63234fa9.gif

  1. Числитель дроби – сколько долей взяли,

5- знаменатель дроби – на сколько разделили целое



hello_html_21cc5c71.jpg





hello_html_m7800fe00.gifhello_html_m324906d0.gifhello_html_50c7c0d7.gif


hello_html_442712d.jpg


Каждый может за версту видеть дробную черту.

Над чертой числитель , знайте,

под чертою знаменатель. Дробь такую, непременно, надо звать обыкновенной.


Дроби можно изображать на координатном луче.

Пример:

0 hello_html_241beab6.gifhello_html_mcdcd79f.gifhello_html_m46952caf.gifhello_html_m6a19cb80.gifhello_html_m4d4ebb27.gifhello_html_6c6b4989.gif 1

hello_html_m31ae253c.gif

Вhello_html_m7dcc51db.gifиды:

правильная дробь – числитель меньше знаменателя (п.д.) < 1 hello_html_m46952caf.gif

Нhello_html_m78d1eb4f.gifеправильная дробь - числитель больше знаменателя (н. д.) > 1 hello_html_mc5455c2.gif

Нhello_html_m5cee2601.gifhello_html_m5cee2601.gifеправильна дробь – числитель = знаменателю (н.д.) = 1 hello_html_42def657.gif



Сложение и вычитание дробей с одинаковыми знаменателями.



Сложение

Вычитание

При сложении дробей с одинаковыми знаменателями числители дробей складывают. А знаменатель оставляют без изменения.

При вычитании дробей с одинаковыми знаменателями из числителя первой дроби вычитают числитель второй дроби. А знаменатель оставляют без изменения.

hello_html_46487667.gif

hello_html_31fcbdb6.gif


Примеры: 1) hello_html_m4ab223a7.gif; 2) hello_html_4fd95d9e.gif



Пример: 1) hello_html_m4bc43eac.gif.



Смешанные числа.

Запись числа, содержащую целую и дробную части, называют смешанной. Для краткости вместо «число в смешанной записи» говорят смешанное число.

2hello_html_42b31bdf.gif; 11hello_html_m7425b17a.gif.


Чтобы из неправильной дроби выделить целую часть, надо:

1) разделить с остатком числитель на знаменатель

2) неполное частное будет целой частью;

3) остаток (если он есть) дает числитель, а делитель - знаменатель дробной части.


Пример: hello_html_m3857a4d6.gif= 47 : 9 = 5(остаток 2) = 5hello_html_m5cff3dd0.gif







Чтобы представить смешанное число в виде неправильной дроби, нужно:

1) умножить его целую часть на знаменатель дробной части;

2) к полученному произведению прибавить числитель дробной части;

3) записать полученную сумму числителем дроби, а знаменатель дробной части оставить без изменения.


Пример: 7 hello_html_1c686369.gif= hello_html_7f8de01f.gif


Сложение и вычитание смешанных чисел.

При сложении и вычитании смешанных чисел целые части складывают или вычитают отдельно, а дробные – отдельно.


Пример: 2hello_html_m3adc1951.gif


Иногда при сложении смешанных чисел в их дробной части получается неправильная дробь. В этом случае из неё выделяют целую часть и добавляют её к уже имеющейся целой части.


Пример: hello_html_m1600cce2.gif


Если при вычитании смешанных чисел дробная часть уменьшаемого меньше дробной части вычитаемого, поступают так:


hello_html_4b8b9f84.gif

У 5 заняли 1 и представили её как hello_html_42def657.gif и добавили к дробной части первой дроби, получили новую дробь. Можно и по-другому: представить обе дроби в виде неправильных и вычитать по правилу обыкновенных дробей с одинаковыми знаменателями.


Таким же образом поступают и при вычитании дроби из натурального числа, и при вычитании смешанного числа из натурального числа.

hello_html_7d57e6a1.gifhello_html_m69cb7d4b.gif; hello_html_m7cd6bc58.gif; hello_html_m6b2d7db0.gif


Задачи на дроби.


Ι тип (часть от числа)



Всего – 9 км

Отремонтировано - ? км. - hello_html_42567408.gif всей дороги

9: 3 · 2 = 6 (км) – отремонтировано

Ответ : 6 километров.

hello_html_42ec494d.gif9 км

? км



ΙΙ тип (по дроби число)

Всего - ?

Отремонтировано – 8 км, что составляет hello_html_42567408.gif

8: 2 · 3 = 12 (км) – длина всей дороги.

Ответ: 12 километров.


8 км

hello_html_2a841e3b.gif

? км









ΙΙΙ тип (число от числа)



hello_html_5cf671f2.gif




2 от 3 = ? ? hello_html_42567408.gif







































Геометрические фигуры

Оhello_html_m6623d057.gifтрезок


АВ = АС + СВ



А С В






Ломаная Многоугольник



hello_html_m742b3a7e.gifhello_html_mc24a33f.gif


Звенья, вершины Стороны, вершины


Луч Прямая


О а

hello_html_m3c62c67f.gifhello_html_m50ba8b4e.gifhello_html_m3f311d8d.gif



Есть

начало К Нет ни начала ни конца.

нет конца





Дополнительные лучи



hello_html_m45c1a970.gif

А О В




Десятичная дробь и действия с десятичными дробями.


Числа со знаменателями 10, 100, 1000 и т.д. можно записывать без знаменателя.


Примеры:

hello_html_m8af8e89.gifhello_html_249177a.gif= 11, 31; hello_html_m70ff66c7.gif = 12, 024; hello_html_m41e0d131.gif = 0,43; hello_html_2ed703f7.gif = 0,0021и т.д.


Сначала пишут целую часть, а потом числитель дробной части. Целую часть отделяют от дробной части запятой. После запятой числитель дробной части должен иметь столько же цифр, сколько нулей в знаменателе.


Если в конце десятичной дроби приписать или отбросить нуль, то получится десятичная дробь, равная данной.

Примеры: 0,78 = 0,7800; 34 = 34,000; 45,700 = 45,70 = 45,7.


1hello_html_75d3d79c.gif. Чтобы сравнить две десятичные дроби надо : а) порязрядно

б) можно после , приписывать и убирать НУЛИ

hello_html_4d8b622f.gif

Чем больше, тем правее hello_html_m53d4ecad.gif 9,76 > 9,7

hello_html_45a686c1.gif

Чем меньше, тем левее 9,8 < 10,2


2. Сложение и вычитание: 1) уравнять в дробях количество знаков после запятой;

2) записать дроби друг под другом так, чтобы запятая была под запятой;

3) выполнить действие, оставив запятую под запятой.


12,14 + 3,187: 2,110 – 1,04

12, 140 __ 2, 11

+ 3, 187 1, 04

15, 327 1, 07









Инструменты для вычислений и измерений величин на местности

Инструмент для быстрого выполнения вычислений – микрокалькулятор.

hello_html_m7460da70.png

Примеры:

  1. Вычислить:

21,3 – 11,42

  1. 3hello_html_34750f86.gifhello_html_34750f86.gifhello_html_34750f86.gifhello_html_34750f86.gif 11 42 9,88


  1. Вычислить:

(11+23 – 4,2) hello_html_m3c62c67f.gif 3

1hello_html_34750f86.gifhello_html_34750f86.gifhello_html_34750f86.gifhello_html_34750f86.gif1 23 4 2 3

hello_html_34750f86.gif

89,4






Инструменты для построения геометрических фигур:

hello_html_68b4e842.pngтранспортир, чертёжный треугольник, линейка







hello_html_m5f593ea8.gifhello_html_m5f593ea8.gif


















Округление чисел.


При округлении числа до какого-либо разряда применяют следующий

алгоритм:

1) если число округляют до какого – нибудь разряда, то все следующие

за этим разрядом цифры заменяют нулями. А если они стоят после

запятой, то их отбрасывают;

2) если первая отброшенная или заменённая цифра равна

* 0, 1, 2, 3, 4, то стоящую перед ней цифру оставляют без изменения;

* 5, 6, 7, 8, 9, то стоящую перед ней цифру увеличивают на 1.


Пhello_html_m5ee0d1.gifримеры: 1) округлить числа 83,54 до десятых

83, 54 hello_html_m3132e3c.gif83, 5



hello_html_2d2985a9.gif2) округлить число 83,54 до десятков

83, 54 hello_html_m3132e3c.gif 80


Таблица числа по разрядам:


Сотни тысяч

Десятки тысяч

Единицы тысяч

Сотни

Десятки

Единицы

,

Десятые

Сотые

Тысячные

Десяти-

тысяч

ные

Сто-

тысяч

ные

Миллионные

Целая часть


Дробная часть




Умножение и деление десятичных дробей.


Умножение

Деление

hello_html_m3c62c67f.gifhello_html_4cbb7abc.gif10

hello_html_m3c62c67f.gif100

hello_html_m3c62c67f.gifhello_html_647fc87c.gif1000 ,

hello_html_m493d3312.gif19,61hello_html_m3c62c67f.gif 100 = 1961

hello_html_m3c62c67f.gifhello_html_4cbb7abc.gif0,1


hello_html_m3c62c67f.gif0,01

hello_html_m3c62c67f.gifhello_html_m144fe10a.gif0,001 ,


1hello_html_5daa6e72.gif080 hello_html_m3c62c67f.gif 0,1 = 108



:hello_html_4cbb7abc.gif10


: 100

:hello_html_m144fe10a.gif 1000 ,

:hello_html_4cbb7abc.gif 0,1


: 0, 01

:hello_html_647fc87c.gif 0,001 ,

При умножении десятичной дроби на натуральное число нужно:

    1. выполнить умножение, не обращая внимания на запятую;

    2. в ответе отделить справа налево столько знаков, сколько их отделено запятой в десятичной дроби.


hello_html_41b1474e.gif1,84

hello_html_84379ca.gif3

5,52


При делении десятичной дроби на натуральное число, нужно:

  1. выполнить деление, не обращая внимания на запятую;

  2. в частном поставить запятую сразу после того, как закончится деление целой части.

hello_html_m3caabd13.gif

-hello_html_m311f0002.gif 19,2 8

hello_html_m311f0002.gif16 2,4

- 3 2

hello_html_m311f0002.gif3 2

0

При умножении десятичных дробей нужно:

  1. выполнить умножение, не обращая внимания на запятые;

  2. в ответе отделить справа налево столько знаков, сколько их было в обоих множителях вместе.


hello_html_41b1474e.gif9,56

hello_html_84379ca.gif3, 05

+ 4 7 8 0

28 6 8

2hello_html_m2823cef2.gif9, 1 5 8 0 = 29, 158






При делении десятичной дроби на десятичную дробь, нужно:

  1. Перенести в делимом и делителе запятую вправо на столько цифр, сколько их после запятой в делителе;

  2. Выполнить деление как на натуральное число.


hello_html_609988a0.jpg

Пhello_html_1d388559.jpgроценты.



















Для перевода десятичной дроби в проценты надо умножить её на 100:


0,846 · 100% = 84,6%



Для перевода процентов в десятичную дробь надо число процентов разделить на 100:


96% = 96 : 100 = 0,96


1% от центнера – килограмм

1% от метра – сантиметр

1% от гектара – ар (сотка)





Задачи на проценты.


Ι тип

Нахождение процентов от числа

ΙΙ тип

Нахождение числа по его процентам

ΙΙΙ тип

Сколько процентов составляет одно число от другого

  1. разделить число на 100 (узнать, чему равен 1%)

  2. умножить полученный результат на данные проценты.



Пример: В книге 120 страниц. Петя прочитал 30% всей книги. Сколько страниц прочитал Петя?


РЕШЕНИЕ.


  1. 120 : 100 = 1,2 (стр.)

  2. 1,2 · 30 = 36 (стр.)


Ответ. 36 страниц прочитал Петя.

1) разделить число на количество процентов (узнать, чему равен 1%)

2)умножить полученный результат на 100%.



Пример: Петя прочитал 70 страниц, что составило 35% всей книги. Сколько страниц в книге?


РЕШЕНИЕ.


  1. 70 : 35 = 2 (стр.)

  2. 2 · 100 = 200 (стр.)


Ответ. 200 страниц во всей книге.

  1. разделить одно число на другое, частное записать в виде десятичной дроби

  2. умножить полученный результат на 100%


Пример: В парке 1000 деревьев, из них 400 берёз. Сколько процентов составляют берёзы от всех деревьев?


РЕШЕНИЕ.

  1. 400 : 1000 = 0,4

  2. 0,4 · 100 = 40%


Ответ. Берёзы составляют 40%.





Задачи на проценты.


hello_html_30d4d009.jpg








hello_html_mf4d032.jpg












































Среднее арифметическое чисел.

hello_html_m62b32d3e.jpg















































Среднее арифметическое чисел.


hello_html_f52fab5.gifhello_html_31b5a579.gifhello_html_m13524e55.gifhello_html_m5319ad24.gifhello_html_494aa73a.gif


Среднее арифметическое чисел 73,5; 81,2 и 76,6 - ?


  1. 73,5 + 81,2 + 76,6 = 234,3

  2. 234,3 : 3 = 77,1 – среднее арифметическое этих чисел.


Среднее арифметическое чисел 0,8 и 1,6 - ?


(0,8 + 1,6) : 2 = 2,4 : 2 = 1,2 - среднее арифметическое чисел 0,8 и 1,6.

hello_html_4c20b87.gifhello_html_4c20b87.gif

0,8 1,2 1,6

hello_html_2f552f25.gifhello_html_2d2985a9.gifhello_html_2d2985a9.gifhello_html_2d2985a9.gif


А С В х



Точка С(1,2) – середина отрезка АВ, где А(0,8); В(1,6).


hello_html_2a6b55ce.gifhello_html_31b5a579.gifhello_html_m33c4efda.gifhello_html_m5319ad24.gifhello_html_m65634109.gif


Задача.

Турист 3 часа плыл по реке со скоростью 10км/ч и 2 часа шёл пешком со скоростью 5 км/ч. Найдите среднюю скорость туриста.


Решение:


  1. 3 · 10 + 2 · 5 = 40 (км) весь путь;

  2. 3 + 2 =5(ч) время движения;

  3. 40 : 5 = 8 (км/ч).


Ответ. Средняя скорость движения 8 км/ч.








Площадь прямоугольника.

Единицы площадей.


Пhello_html_m5c90f2aa.jpgлощадь прямоугольника S равна:


S = a · b, где a и b


стороны прямоугольника.


S = 5 · 3 = 15 смhello_html_4fbf37b8.gif





hello_html_m5c90f2aa.jpg







6


Общая информация

К учебнику: Математика. 5 класс. Виленкин Н.Я., Жохов В.И. и др. 31-е изд., стер. - М: 2013. - 280с.

Номер материала: ДВ-279019

Похожие материалы