Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Применение приближенного вычисление в определенных интегралов
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Применение приближенного вычисление в определенных интегралов

библиотека
материалов

Применение приближенного вычисление в определенных интегралов

Биймурсаева Б.М-к.п.н.,доцент

Эшенкулова А.К-преподаватель

Аннотация:В статье рассматриваются методы вычисления определенного интеграла и примеры.В основном методы аппроксимации и интерполяции.

The Abstract: In article is considered methods calculation certain integral and examples.


Basically methods to aproximations and interpolations.


Ключевые слова: Определенный интеграл,функция,математический метод,


аппроксимации,интерполяция,кривые,численные методы,полиномы,объекты.


The Keywords: Determined integral,function,mathematical method, aproximations,interpolation,curves,the numerical methods,multinomials,objects.





Сущность большинства методов вычисления определенных интегралов состоит в замене подынтегральной функции аппроксимирующей функцией, для которой можно легко записать первообразную в элементарных функциях.

Аппроксимация, или приближение - математический метод, состоящий в замене одних математических объектов другими, в том или ином смысле близкими к исходным, но более простыми. Аппроксимация позволяет исследовать числовые характеристики и качественные свойства объекта, сводя задачу к изучению более простых или более удобных объектов (например, таких, характеристики которых легко вычисляются или свойства которых уже известны)[1]. В теории чисел изучаются диофантовы приближения, в частности приближения иррациональных чисел рациональными. В геометрии рассматриваются аппроксимации кривых ломанными. Некоторые разделы математики целиком посвящены аппроксимации, например, теория приближения функций, численные методы анализа[4].

Также в задачах такого рода активно используются интерполяционные методы нахождения значений функции.

Интерполяция - в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений[3].

Многим из тех, кто сталкивается с научными и инженерными расчётами часто приходится оперировать наборами значений, полученных экспериментальным путём или методом случайной выборки. Как правило, на основании этих наборов требуется построить функцию, на которую могли бы с высокой точностью попадать другие получаемые значения. Такая задача называется аппроксимацией кривой. Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.

Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить её значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию. Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты, какие давала бы первоначальная функция. Но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.

На практике чаще всего применяют интерполяцию полиномами. Это связано прежде всего с тем, что полиномы легко вычислять, легко аналитически находить их производные и множество полиномов плотно в пространстве непрерывных функций.

Для решения нашей задачи необходимо предусмотреть ввод необходимых данных и реализацию контрольного примера.

Также необходимо реализовать подпрограммы в виде функций. Главная функция будет выполнять основные действия (подсчет значения интеграла и вывод в файл результата), вызывая другие подпрограммы.

Главная функция будет вызывать функцию подсчета интеграла с заданной точностью вычислений, которая в свою очередь на каждом шаге будет вызывать функцию подсчета значения функции.

Пример 1.

Вычислим интеграл hello_html_3d413d90.png методом Гаусса.

Решение.

hello_html_df0dccf.png

hello_html_m7ae7dd57.png.

hello_html_m4a0430f6.png.

hello_html_34681720.png

hello_html_4bbb5f70.png.

Ответ: 3.584.

Пример 2.

Вычислим интеграл hello_html_m599b4968.png методом Гаусса.

Решение.

hello_html_m40f790f5.png.

hello_html_m3089981.png.

hello_html_m5b584e29.png

hello_html_m75940588.png

Ответ: - 0.588[2].

Литература:

1. Бронштейн И.Н. Справочник по математике для инженеров и учащихся втузов [Текст] / И.Н. Бронштейн, К.А. Семендяев. - М.: Наука, 2007. - 708 с.

2. Кремер Н.Ш. Высшая математика для экономистов: учебник для студентов вузов. [Текст] / Н.Ш. Кремер, 3-е издание - М.: ЮНИТИ-ДАНА, 2006. C.412.

3. Калиткин Н.Н. Численные методы. [Электронный ресурс] / Н.Н. Калиткин. - М.: Питер, 2001. С.504.

4. Численное интегрирование [Электронный ресурс] - Режим доступа: http://ru. wikipedia.org/wiki/Численное_интегрирование

.




Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 21.12.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров279
Номер материала ДВ-276565
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх