Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / "Применение эвристических методов на уроках математики в коррекционной школе"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Математика

"Применение эвристических методов на уроках математики в коррекционной школе"

библиотека
материалов
hello_html_m2d97541.gifhello_html_m2915d2a2.gif

Применение эвристических методов на уроках математики

в коррекционной школе


Л.А.Кожевникова, учитель математики IMG_2251

первой квалификационной категории



Расскажи мне, и я забуду,

покажи мне, и я запомню,

вовлеки меня, и я научусь.

Китайская мудрость


Произошедшие за последние десятилетия экономические и социальные преобразования в нашей стране привели к изменению государственной парадигмы российского образования в направлении приоритета личностного развития и самореализации обучаемого. Переход к новым социально-экономическим отношениям выдвигает задачу развития в человеке способностей преодолевать возникающие проблемы, предлагать их нестандартные решения. Актуальной становится необходимость развития творческих способностей будущего специалиста. Значимой становится проблема свободы выбора и возможности принятия человеком самостоятельных решений в условиях социальных перемен. Образование должно быть ориентировано на формирование потребностей в постоянном пополнении и обновлении знаний, совершенствовании умений и навыков, их закреплении и превращении в компетенции.

Особенно тяжело приходится людям с ограниченными возможностями здоровья. В специальных (коррекционных) школах обучаются дети с различными патологиями, в частности с тяжёлыми нарушениями речи. В учебном процессе необходимо учитывать речевое своеобразие школьников, отсутствие предпосылок к прогрессивному овладению материалом:

- недостаточное понимание учебных заданий;

- трудности овладения учебными понятиями и терминами;

- трудности формирования и формулирования собственных мыслей в процессе учебной работы;

- недостаточное развитие связной речи.

Кроме этого, надо осознавать недостаточность сформированности психологических предпосылок к учебной деятельности учащихся: их неустойчивое внимание, низкую переключаемость, неразвитую память, слабое развитие словесно-логического мышления, недостаточный уровень развития контрольных действий. Всё это вынуждает и обязывает выявлять рациональные пути и методы обучения и коррекции психофизических недостатков детей с нарушениями речи. В большей части они обладают краткосрочной памятью, поэтому учебный материал, который был ими не понят, а механически заучен, просто «вылетает» из головы.

На фоне этого, проблема эвристического обучения является одной из наиболее актуальных, так как она предполагает отказ от получения готовых знаний, их непосредственного воспроизведения (репродукции) и основывается на поиске информации. Развитие эвристического мышления обеспечивает возможность самостоятельно приобретать новые знания, применять их в многообразных условиях окружающей действительности.

Эвристика (от греч. heurisko - нахожу) - методология научного исследования, а также методика обучения, основанная на открытии или догадке.

Эвристический метод в обучении позволяет педагогу представить учащимся больше самостоятельности и творческого поиска.

Эвристика выполняет многие дидактические функции:

1) средство мотивации при выборе, предпочтении тех или иных действий;

2) средство осознания общности решаемых математических задач, их единства; систематизация изученного и изучаемого материала;

3) способ установления аналогии;

4) способ приобретения знаний, их "добывания";

5) источник внутренней установки на познавательную деятельность;

6) способ организации диалога (делают его более продуктивным);

7) способ подведения обучаемого к математическому открытию;

8) способ создания сюжетной канвы, сюжетной оболочки.

Проблема в том, что при разработке методики формирования творческих способностей посредством эвристического метода учитель должен учитывать:

а) общий уровень развития ученического коллектива;

б) личностные особенности учащихся;

в) специфические черты и особенности учебного предмета.

Следовательно, задачами учителя будут выступать:

а) постоянное пополнение запаса знаний учащихся по математике;

б) развитие общеучебных умений и навыков;

в) развитие творческой самостоятельности учеников;

д) воспитание творческой личности.

Эвристический метод обучения отличается от других характером деятельности преподавателя, от которого требуется умение поставить проблему, составить и предъявить задания на выполнение отдельных этапов решения познавательных и практических проблемных задач, планирование шагов решения, руководство деятельностью учеников (корректировка и создание промежуточных проблемных ситуаций). Здесь явно просматривается отличие от традиционной роли преподавателя как информатора. Процесс обучения идёт по схеме «учение в деятельности». Это в свою очередь ведёт к созданию возможностей для максимального развития каждого обучающегося.

Существует несколько приёмов эвристической деятельности:

приёмы эвристической деятельности

общие

специфические

индукция

дедукция

аналогия

анализ

синтез


подведение под понятие

выведение следствий

формирование представлений о математических закономерностях














1) Индукцией называется метод рассуждений, при котором общий вывод основывается на изучении отдельных, частных фактов. Если при общем выводе рассматриваются все частные факты, то индукция называется полной, а в противном случае - неполной.

В обучении математике в школе важное место занимает неполная индукция. Ее используют в следующих случаях:

а) для переоткрытия математических предложений;

б) чтобы удостоверить учащихся в справедливости той или иной теоремы, если доказательство сложно;

в) для иллюстрации с помощью наглядных пособий теоремы, ее доказательства;
г) как один из эффективных методов решения задач.

Неполная индукция является основой метода целесообразных задач. Метод целесообразных задач я применяю при изложении новой темы. При этом подбираю минимальное количество задач.

В восьмом классе при введении понятия параллелограмма предлагаю упражнение: «Проведите две параллельные прямые, пересеките их двумя другими параллельными прямыми. У вас получился четырехугольник, который называют параллелограммом. Попробуйте дать определение параллелограмма». В моем классе учащиеся дали такую формулировку: «Параллелограмм – это такой четырехугольник, у которого противоположные стороны параллельны». Тогда даю контрпример. Черчу трапецию и подвожу под нее формулировку данного учащимися определения. Учащиеся догадываются включить в определение слово попарно.

При введении понятия «ромб» предлагаю учащимся упражнение. Постройте параллелограмм, две смежные стороны которого равны. Такой параллелограмм называют ромбом. Сформулируйте определение ромба. Время, потраченное на выполнение чертежа окупается с лихвой, так как он тут же используется при доказательстве теоремы о свойствах ромба.

Можно привести еще массу примеров, где используется метод целесообразных задач. Важно подчеркнуть, что этот метод фокусирует внимание учащихся на отдельных деталях новой темы, а значит, до осознания идеи нового материала затрудняет в общем его понимание. Поэтому, прежде чем применить этот метод, учителю надо подумать о его эффективности.
2) Дедукция - форма мышления, при которой утверждение логически выводится из уже известных ученику утверждений. Чтобы доказать неизвестную теорему, ее сводим к известной аксиоме, теореме или определению.

При изучении темы «Ромб» учителю лучше не в готовом виде формулировать свойство диагоналей ромба, а изучение материала строить в виде проблемного обучения. Можно дать следующие задания учащимся: «Наблюдением установите свойства диагоналей ромба».

Некоторые учащиеся замечают эти свойства и формулируют приблизительно так: «Диагонали ромба пересекаются под прямым углом и делят его углы пополам». Далее учителем задается вопрос: «А как доказать сформулированное утверждение?». Если учащиеся затрудняются, а такое возможно, в зависимости от интеллектуального уровня учеников, то учитель задает наводящие вопросы, такие как:

- А каким уже известным свойством обладают диагонали ромба?

- Диагонали ромба точкой пересечения делятся пополам. То есть отрезки ВО и ОД равны.

- Чем является отрезок АО в ВАД и что за треугольник ВАД?

- АО - медиана треугольника ВАД, треугольник ВАД - равнобедренный, так как АВ=АД по определению ромба.

Учащиеся на эти вопросы обычно отвечают легко. 

Далее учащиеся уже сами догадываются сформулировать свойство медианы равнобедренного треугольника.

При таком изучении материала срабатывает основная закономерность памяти, которая гласит: «если соблюдать два условия: учащийся выполняет над материалом активную мыслительную деятельность и эта деятельность способствует углубленному пониманию материала, то происходит успешное запоминание материала (произвольное или непроизвольное)».

3) Аналогией называется рассуждение, которое имеет следующую схему:

А имеет свойства a, b, c,d

В имеет свойства a, b, c

Возможно, В обладает свойством d

Например, при изучении признаков делимости, выяснив с учащимися признак делимости чисел на 3, можно выполнить упражнение на формулирование признака делимости чисел на 9, по аналогии с признаком делимости чисел на 5 сформулировать признак делимости чисел на 25.

1) На 3 делятся только те числа, у которых сумма цифр делится на 3.

2) На 9 делятся только те числа, у которых сумма цифр делится на 9.

3) На 5 делятся только те числа, последняя цифра которых 0 или 5.

4) На 25 делятся только те числа, две последние цифры которых - нули или образуют число, делящиеся на 25.

Утверждения 2) и 4) являются аналогичными утверждениям 1) и 3). Но истинность утверждений, сделанных по аналогии, учащиеся должны проверять, чтобы не допустить ошибок.

4) Анализ и синтез – методы логики.

Мною на уроках применяются анализ и синтез в двух формах:

- когда ученики в рассуждениях двигаются от искомых к данным (при анализе); когда в рассуждениях двигаются от данных к искомым (при синтезе);

- когда целое расчленяют на части (при анализе), когда элементы объединяют в одно целое (при синтезе).

Целесообразно применять упражнения на отработку анализа и синтеза.

Опираясь на проведенные исследования и практический опыт, можно выделить следующие принципы эвристического обучения:

1. Принцип личностного целеполагания ученика. Образование каждого учащегося происходит на основе и с учетом его личных учебных целей.

2. Принцип выбора индивидуальной образовательной траектории. Ученик имеет право на осознанный и согласованный с педагогом выбор основных компонентов своего образования: смысла, целей, задач, темпа, форм и методов обучения, личностного содержания образования, системы контроля и оценки результатов.

3. Принцип продуктивности обучения. Главным ориентиром обучения является личное образовательное приращение ученика, складывающееся из его внутренних продуктов учебной деятельности (умения, способности, способы деятельности и т.п.) и внешних (версия, текст, рисунок и т.п.).

4. Принцип первичности образовательной продукции учащегося. Создаваемое учеником личностное содержание образования опережает изучение образовательных стандартов и общепризнанных культурно-исторических достижений в изучаемой области.

5. Принцип образовательной рефлексии. Образовательный процесс включает непрерывное осознание учеником и учителем собственной деятельности: анализ и усвоение способов этой деятельности, получаемых результатов, конструирование на данной основе последующих действий и планов обучения.

В заключение хочется отметить, что, как и каждый метод, эвристический имеет свои достоинства и недостатки. Этот метод позволяет активизировать мыслительную деятельность учащихся, помогает хорошему усвоению материала, развитию мышления, способностей учащихся, но требует большего времени, чем изложение готовых знаний, сказываются интеллектуальные способности учащихся, которые быстро приходят к нужному выводу, а некоторые пассивно наблюдают за процессом обучения. Поэтому необходимо использование эвристического метода в комплексе с другими.



Краткое описание документа:

В статье "Применение эвристических методов на уроках математики в коррекционной школе" представлен материал из опыта работы в школе для детей с тяжёлыми нарушениями речи.

Эвристика - методология научного исследования, а также матодика обучения, основанная на открытии или догадке. Применение эвристического метода в обучении позволяет учителю пердставить учащимся больше самостоятельности и творческого поиска.

Развитие эвристического мышления обеспечивает возможность самостоятельно добывать новые знания, применять их в многообразных условиях окружающей действительности, что полностью соответствует современным требованиям к обучению.

Автор
Дата добавления 17.01.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров440
Номер материала 309730
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх