Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Примеры задач на построение

Примеры задач на построение

В ПОМОЩЬ УЧИТЕЛЮ ОТ ПРОЕКТА "ИНФОУРОК":
СКАЧАТЬ ВСЕ ВИДЕОУРОКИ СО СКИДКОЙ 86%

Видеоуроки от проекта "Инфоурок" за Вас изложат любую тему Вашим ученикам, избавив от необходимости искать оптимальные пути для объяснения новых тем или закрепления пройденных. Видеоуроки озвучены профессиональным мужским голосом. При этом во всех видеоуроках используется принцип "без учителя в кадре", поэтому видеоуроки не будут ассоциироваться у учеников с другим учителем, и благодарить за качественную и понятную подачу нового материала они будут только Вас!

МАТЕМАТИКА — 603 видео
НАЧАЛЬНАЯ ШКОЛА — 577 видео
ОБЖ И КЛ. РУКОВОДСТВО — 172 видео
ИНФОРМАТИКА — 201 видео
РУССКИЙ ЯЗЫК И ЛИТ. — 456 видео
ФИЗИКА — 259 видео
ИСТОРИЯ — 434 видео
ХИМИЯ — 164 видео
БИОЛОГИЯ — 305 видео
ГЕОГРАФИЯ — 242 видео

Десятки тысяч учителей уже успели воспользоваться видеоуроками проекта "Инфоурок". Мы делаем все возможное, чтобы выпускать действительно лучшие видеоуроки по общеобразовательным предметам для учителей. Традиционно наши видеоуроки ценят за качество, уникальность и полезность для учителей.

Сразу все видеоуроки по Вашему предмету - СКАЧАТЬ

  • Математика

Поделитесь материалом с коллегами:

Тема: Примеры задач на построение

Цель урока:

  • Образовательные:

        • познакомить учащихся с задачами на построение;

        • сформировать умение решать простые задачи на построение;

        • расширить знания об истории геометрии.

  • Воспитательные:

        • воспитание ответственного отношения к учебному труду, воли и настойчивости для достижения конечных результатов при изучении темы;

        • воспитание интереса к истории математики, как науки.

  • Развивающие:

  • развитие навыков самоконтроля;

  • формирование алгоритмического мышления

Ход урока:

  1. Организационный момент.

Часто знает и дошкольник,

Что такое треугольник,

А уж вам-то, как не знать…

Но совсем другое дело —

Очень быстро и умело

Треугольники считать!

Например, в фигуре этой

Сколько разных? Рассмотри!

Все внимательно исследуй

И “по краю” и “внутри”.

2. Актуализация знаний учащихся.

Вопросы для актуализации знаний учащихся по теме треугольник:

  • Какая фигура называется треугольником?

  • Какие виды треугольников вы знаете?

  • В чем заключается неравенство треугольника?

  • Известны стороны равнобедренного треугольника 6 см и 8 см. Чему равна третья сторона треугольника?

  • Существуют ли треугольники со сторонами 10 см; 15 см; 30 см?

  • Существуют ли треугольники со сторонами 11 см; 5 см; 6 см?

3. Изучение нового материала.

Добиться успеха в решении задач на построение поможет аккуратность и точность измерений, умение пользоваться чертёжными инструментами и знание способа построения треугольника. Одни из самых древних математических задач. По их поводу у математиков ряд договорённостей и ограничений. В соответствии с ними стороны треугольника задаются в виде отрезков, а не числами, определяющими их длину; углы задаются в виде геометрической фигуры – угла. При построении разрешается пользоваться лишь математической линейкой и циркулем. С помощью линейки как инструмента геометрических построений можно провести произвольную линию; произвольную прямую, проходящую через данную точку; прямую, проходящую через две данные точки. Никаких других операций выполнять линейкой нельзя. В частности, нельзя откладывать линейкой отрезок, даже если на ней имеются деления. Циркуль, как инструмент геометрических построений, позволяет описать из данного центра окружность данного радиуса. В частности, циркулем можно отложить данный отрезок на данной прямой от данной точки.

Построить треугольник с данными сторонами a, b, c. (Учитель демонстрирует построение на доске).

hello_html_5c5794a2.jpg

Решение.

С помощью линейки проводим произвольную прямую и отмечаем на ней точку B.

hello_html_3bf9a33a.jpg

Раствором циркуля, равным a, описываем окружность с центром B и радиусом a. Пусть С точка пересечения окружности с прямой.

hello_html_m27e6006e.jpg

Теперь раствором циркуля, равным с, описываем окружность из центра B.

hello_html_1c45ee2.jpg

Теперь раствором циркуля, равным b, описываем окружность из центра С. Пусть A – точка пресечения этих окружностей.

hello_html_131d64f3.jpg

Проведем отрезки CA и BA. Полученный Δ ABC имеет стороны, равные a, b и с.

hello_html_m1c2d0d5b.jpg

Ученики получают на каждую парту алгоритм в виде карточки – схемы.

А теперь выполните задание, работая в парах. Построить треугольник со сторонами 5 см, 6см, 4см.

Сообщение: Египетский треугольник.

Землемеры (гарпедонавты) Древнего Египта для построения прямого угла пользовались следующим приёмом. Бичёвку растягивали на 12 равных частей так, чтобы получался треугольник со сторонами 3,4,5 делений. Угол треугольника, противолежащий стороне с пятью делениями, был прямой. В связи с указанным способом построения прямого угла треугольник со сторонами 3, 4, 5 (ед.) иногда называют египетским.


Рассмотреть решение задачи на построение угла, равного данному, работая в парах. Учебник задача 2, с.154.

hello_html_m32403b87.jpg

4. Закрепление нового материала.

Решить № 600, 603, 606.

Подведение итогов урока (рефлексия).

Мы изучили много нового, узнали какие задачи можно решить только с помощью циркуля и линейки. У вас у каждого лежит лист с вопросами. Оцените свою работу на сегодняшнем уроке, выбрав один из предложенных вариантов ответа.

  • Оцените степень сложности урока. Вам было на уроке:

    • легко;

    • обычно;

    • трудно.

  • Оцените степень вашего усвоения материала:

  • усвоил полностью, могу применить;

  • усвоил полностью, но затрудняюсь в применении;

  • усвоил частично;

  • не усвоил.

Выучить задача 1, 2 п.20, Вопросы с. 157 № 1, 2.

Решить № 601, 605, 824.

Есть у математики молва,

Что она в порядок ум приводит,

Потому хорошие слова

Часто говорят о ней в народе.

Ты нам, математика, даёшь

Для победы важную закалку.

Учится с тобою молодёжь


Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

Автор
Дата добавления 29.11.2016
Раздел Математика
Подраздел Конспекты
Просмотров13
Номер материала ДБ-401827
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх