Инфоурок / Математика / Конспекты / Проект "Нужны ли отрицательные числа?"

Проект "Нужны ли отрицательные числа?"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов

Тема проекта «Нужны ли отрицательные числа»

Введение

Числа не управляют миром, но показывают, как управляется мир!

И. Гете

Это высказывание показывает, какую роль, играют любые числа в нашей жизни. На самых ранних ступенях развития люди знали только натуральные числа. Но этими числами нельзя обойтись даже в самых простых случаях. Нельзя вычесть большее число из меньшего, например 5 из 3. Однако в повседневной жизни и не представляется необходимым производить подобное вычитание, и потому очень долгое время оно считалось не только невозможным, но и совершенно бессмысленным. В моем представлении было самое маленькое число 0, т.е ничего, а оказывается, что есть еще числа меньше 0. Это отрицательные числа, т.е меньше, чем ничего. В своей работе я рассмотрела необходимость применения отрицательных чисел не только в математике, но и в других науках -географии, физике, биологии и в повседневной жизни.

Актуальность темы: После изучения темы «Отрицательные числа» на уроках математики, я стала обращать внимание на то, что отрицательные числа встречаются и на других уроках. И у меня возник вопрос: «Достаточно ли нам только положительных чисел?». Это и подтолкнуло меня к исследованию темы, мне захотелось понять, что отрицательные числа также необходимы, как и положительные.

Цель работы: изучить историю возникновения отрицательных чисел, и исследовать применение отрицательных чисел.

Задачи:

  1. Собрать материал и изучить литературу по данной теме;

  2. Выяснить, когда и как возникли отрицательные числа;

  3. Исследовать применение отрицательных чисел;

  4. Составить задачи с использованием отрицательных чисел;

  5. Обобщить материал и познакомить с ним своих одноклассников.

Гипотеза: необходимы ли нам отрицательные числа?

Объект исследования: применение отрицательных чисел.

Предмет исследования: отрицательные числа

Методы исследования:

  • Анализ используемой литературы

  • Наблюдения

  • Беседа

Практическая значимость работы заключается в том, что использование отрицательных чисел способствует более рационально подходить к решению практических задач.

II. Основное содержание

  1. Теоретическая часть

История возникновения отрицательных чисел.

Для изучения истории возникновения отрицательных чисел я обратилась к дополнительной литературе и Интернет – ресурсам. Я узнала, что отрицательные числа появились значительно позже натуральных чисел и обыкновенных дробей.

Первые представления об отрицательных числах возникли еще до нашей эры. Так, во II в. до н.э. китайский ученый Чжан Цань в книге «Арифметика в девяти главах» приводит правила действий с отрицательными числами, которые он понимает как долг, а положительные как имущество. Отрицательные числа он записывал с помощью чернил другого цвета в отличии от положительных.

В III в. до н.э. древнегреческий математик Диофант фактически пользовался отрицательными числами, рассматривая их как «вычитаемые», а положительные как «прибавляемые».

Индийские ученые использовали отрицательные числа в торговых расчетах. Если вы имеете 3000 рублей и покупаете товар на 1000 рублей, то у вас остается 3000 – 1000 =2000 рублей. Но если вы имеете 3000 рублей и покупаете товар на 5000 рублей, то у вас образуется долг 2000 рублей. Поэтому, в этом случае считали, что совершается вычитание 3000 – 5000, результатом является число 2000 со знаком «минус», означающее «две тысячи долга». Таким образом, – 2000 это отрицательное число и в данном случае оно указывает на то, что у вас образовался долг 2000 рублей.


Индийский математик Брахмагупта в VII в. сформулировал правила действий над положительными и отрицательными числами. Правила сложения положительных и отрицательных чисел он выражал так:
«Сумма двух имуществ – имущество»:
(+х)+(+х)=+х «Сумма двух долгов есть долг»:
(-х)+(-х)=-х

Отрицательные числа окончательно вошли в употребление лишь со времени Французского математика Р.Декарта(1596 – 1650). Он дал геометрическое истолкование отрицательным числам как направленных отрезков. В 1637 году он

ввел «координатную прямую».

Только вначале XIX в. отрицательные числа получили всеобщее признание и современную форму обозначения.

2. Практическая часть

Применение отрицательных чисел

Среди учащихся 5-11 классов школы я провела опрос, где нужно было ответить на два вопроса.

  1. Где отрицательные числа используют в наше время?

  2. Зачем ввели отрицательные числа?

На первый вопрос 77,5% учащихся ответили, на уроках математики, отрицательный баланс на телефоне и температурная шкала на термометре. 54,7% учащихся не знают зачем ввели отрицательные числа. Результаты опроса подтолкнули меня на исследование. Поэтому сначала я решила провести исследование применения отрицательных чисел и обратилась к Интернет-сети.

Понаблюдаем за движением автомашин по шоссе, стоя на обочине лицом к дороге. Два потока машин несутся навстречу друг другу. Вот, например, «Москвич» проносится мимо нас со скоростью 100 км /ч, а грузовик движется со скоростью 70 км/ч. Но этих чисел не достаточно, если мы хотим указать ещё и направление движения. Действительно, мы ведь должны ещё добавить, что «Москвич» едет вправо, а грузовик - влево. Таким образом, чтобы охарактеризовать движение автомобиля по шоссе, надо не только указать, как быстро он едет (то есть указать величину его скорости), но и дополнительно пояснить, куда, в каком направлении он едет - вправо или влево. Поэтому говорят, скорость автомобилей, движущихся вправо, считать положительной, а скорость автомобилей, движущихся влево -отрицательной. То есть знак числа будет указывать направление скорости (направление движения) автомобилей.

Вставляя в часы батарейку, я заметила, что на одном крае стоит «+» на другом «-». На элективе по физике, я выяснила, что в заряды бывают положительными и отрицательными.

Наблюдая за погодой в разное время года, я обратила внимание, что зимой температура на термометре ниже 0С, а летом – выше 0С. Но в физике слова в формулу не подставишь, поэтому температуру ниже 0С обозначают знаком «-», а выше 0С - знаком «+». В математике понижение температуры выражается знаком «-», а повышение - знаком «+».

Отрицательные числа в биологии выражают патологию глаза. Близорукость(миопия) проявляется снижением остроты зрения. Для того, чтобы при близорукости глаз мог ясно видеть отдаленные предметы применяют рассеивающие (отрицательные) линзы.

Посмотрим на физическую карту мира. Участки суши на ней раскрашены различными оттенками зеленого и коричневого цветов, а моря и океаны раскрашены голубым и синим. Каждому цвету соответствует своя высота (для суши) или глубина (для морей и океанов). Высота гор измеряется с помощью положительных чисел.

Глубина воды измеряется с помощью отрицательных чисел.

Слово «отрицательный» употребляется в повседневной жизни чаще всего с негативным оттенком. Например, эмоции человека (плачет). В сказках Баба-яга используется как отрицательный герой. Но бывают случаи, когда мы рады слову «отрицательный». Происходит это, например, когда человек сдает анализы на наличие в организме какой-либо инфекции, и мы радуемся, когда в справке записан отрицательный результат; это означает, что данный возбудитель заболевания не выявлен, человек здоров.

Вывод: Итак, отрицательные числа используются для описания величин, процессов, явлений (и не только в математике). Владение математическими понятиями позволяет увидеть необычное в привычных и обыденных явлениях.

Изучив применение отрицательных чисел, я составила следующие задачи, которые можно использовать на уроках математики.

1. Автомобиль движется из Краснослободска в Саранск. Записать координаты населенных пунктов и найдите их место расположение относительно г.Краснослободска.

2. Температура воздуха в г. Краснослободске понижается каждый час на два градуса. Сейчас термометр показывает -17 градусов. Как изменится температура через три часа? Изобразите это на координатной прямой. Составьте выражение для этой задачи. Какую температуру термометр покажет через три часа?

3. В жаркое летнее время вода в р.Мокша опускается на 2 метра, при выпадении осадков(дождей) она поднимается на 3 метра. Изобразите изменения уровня воды на координатной прямой. За начало отчета возьмите уровень воды в реке. Напишите координаты минимального и максимального значений уровня воды.

Зачем нужны отрицательные числа?

Изучая справочник по элементарной математике, я нашла ответ на вопрос: «Зачем ввели отрицательные числа?» Долгое время уравнения изучались без помощи отрицательных чисел, при этом возникали многие неудобства. Для устранения этих неудобств и были введены отрицательные числа. При этом в течение долгого времени многие выдающиеся математики отказывались вводить их в употребление или вводили с большой неохотой. Поэтому я провела исследование на примере линейного уравнения. При решении уравнения первой степени с одним неизвестным, например уравнения

7x - 5 = 10x - 11,

мы переносим члены так, чтобы в одной части уравнения оказались известные, в другой — неизвестные величины. При этом знаки меняются на противоположные. Собирая неизвестные в правую часть, а известные в левую, получаем

11- 5 = 10x - 7x;

6 = 3x;

x = 2.

Эти преобразования можно выполнять, совершенно не пользуясь отрицательными числами и рассматривая знаки + и - как знаки сложения и вычитания, а не как знаки положительных и отрицательных чисел. Но тогда нужно заранее продумать вопрос, а какую сторону, вправо или влево, следует переносить неизвестные члены. Если, например, в уравнении 7x - 5 = 10x – 11 перенести неизвестные члены влево, получим

7x- 10x = 5 - 11.

Не вводя отрицательных чисел, мы не можем из 5 вычесть 11, не можем из7x вычесть 10x и, значит, не можем дальше продвинуться в решении уравнения. Между тем заранее не всегда видно (особенно если членов много), в какую сторону нужно переносить неизвестные члены, чтобы такого положения не создавалось. Для рационализации вычислительного процесса и были введены отрицательные числа.

Вывод: Отрицательные числа вводятся затем, чтобы устранить ряд трудностей, возникших прежде всего при решении уравнений.

III. Заключение

Подводя итоги своей работы, я сделал вывод, что большинство опрошенных учащихся знают отрицательные числа, но есть и такие у которых представление отрицательных чисел неверное. Изучая литературу, я поняла, что отрицательные числа возникли из практических нужд людей.

Работая с источниками, я выяснила, что отрицательные числа больше всего встречаются в точных науках, в математике и физике. Введение отрицательных чисел было связано с необходимостью развития математики как науки, дающей общие способы решения арифметических задач, независимо от конкретного содержания и исходных числовых данных. Отрицательные числа явились результатом внедрения рационализаторского приема в вычислительную практику. Поэтому отрицательные числа необходимы. С их появлением произошел большой толчок развития науки.








Список литературы и Интернет-ресурсов


  1. Источник: М. Я. Выгодский. Справочник по элементарной математике. Москва 1986.

  2. Гельфман Э.Г. «Положительные и отрицательные числа»,

учебное пособие по математике для 6-го класса, 2001.


  1. http://docme.rudoc/74448/otricatel._nye-chisla

  2. http://otherreferats.allbest.ruМатематика








Общая информация

Номер материала: ДВ-253703

Похожие материалы