Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Научные работы / Проект "Уравнения и неравенства как математические модели"

Проект "Уравнения и неравенства как математические модели"

Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs


Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/

  • Математика

Поделитесь материалом с коллегами:















уравнения и неравенства как математические модели















Содержание

4

1.1.Вид соотношений с выделенными параметрами……………………

5

1.2. Пример решения неравенства с параметром…………………….

6

Заключение…………………………………………………………………

10

Список литературы……………………………………………………….

11



















Введение


Математическая статистика − наука о математических методах систематизации и использования статистических данных для научных и практических выводов. Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надежность и точность выводов, делаемых на основании ограниченного статистического материала (например, оценить необходимый объем выборки для получения результатов требуемой точности при выборочном обследовании). Любой творчески работающий специалист физического воспитания в ходе своей работы получают фактический экспериментальный материал (первичный цифровой массив). Если эти данные не будут корректно обработаны с помощью методов математической статистики, то их работа теряет всякий теоретический и практический смысл.

В настоящее время ведущее положение в приложениях математики занимает математическое моделирование. Используя это понятие, можно сказать, что прикладное значение уравнений, неравенств и их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании.

Цель: проанализировать уравнения и неравенства как математические модели.

Задачи:

  1. Провести теоретический анализ литературы по теме исследования.

  2. Рассмотреть:

  • примеры решения уравнений с параметрами как математической модели;

  • вид соотношений с выделенными параметрами;

  • пример решения неравенства с параметром.

  1. Сформулировать выводы.

1.Примеры решения уравнений с параметрами как математической модели


Ряд проблем в различных отраслях человеческой деятельности может быть изучен математическими методами. На этом пути, применяя язык математики, изучаемым явлениям ставят в соответствие модельные явления. Если они описаны с помощью математических правил, то такие модели называются математическими. Примером такого процесса является процесс решения простейших так называемых «текстовых» задач с помощью сведения их к уравнениям или неравенствам [7].

Любая предметная область характеризуется своим набором понятий связей между ними. Каждая предметная область имеет свои специфические методы решения задач. Необходимость в формализованном представлении знаний возникла в связи с их обработкой средствами компьютерной техники. Методология моделирования и формализации концептуальных знаний, ориентированная на их компьютерную обработку, является одной из основных тем развития искусственного интеллекта [7].

Под моделью мы будем понимать «систему произвольной природы, отражающую свойства, характеристики и связи моделируемого объекта (объекта-оригинала), которые считаются существенными для решения данной задачи» [5, с. 46]. При этом отсутствие в модели несущественных элементов не менее важно, чем присутствие в ней существенных. 

Главное назначение модели состоит в упрощении получения информации о свойствах объекта-оригинала. Полное соответствие модели оригиналу невозможно по определению.

Приведем пример.

Пример. Рассмотрим уравнение . Его можно понимать как квадратное уравнение относительно неизвестного х , а можно понимать как квадратное уравнение относительно неизвестного а с параметром х. Следует же понимать это уравнение как уравнение с двумя неизвестными х и а. В левой части уравнения стоит математическое выражение от двух аргументов х и а.

Множество решений такого уравнения – это множество пар чисел, при подстановке которых в уравнение получается верное равенство.

Взгляд относительно х говорит о решении уравнения относительно х. В этом случае аргументы х и а считают неравноправными. Поэтому необходимо выразить при решении х через а, которое называют «параметром».

Можно рассмотреть это уравнение по-другому, взгляд относительно а: необходимо иметь ответ в таком виде, чтобы для каждого значения а было указано, какие числа х в паре с этом а дают решения данного уравнения.

На этом пути, если брать разные основания для классификаций (например, от вида математического выражения, задающего уравнение) и учитывая разные взгляды на аргументы, входящие в это математическое выражение, получим спектр разных типов уравнений (неравенств).


1.1.Вид соотношений с выделенными параметрами


В реальных задачах (например, с физическим содержанием) естественно вводится неравноправие аргументов, входящих в уравнение. Они делятся на «неизвестные», обозначаемые, как правило, последними буквами латинского алфавита (…, x, y, z), и «параметры» – обозначаемые первыми буквами (a, b, c,…) [7].

Рассмотрим один из способов решения задачи с параметрами:

значение параметра (или параметров, если их несколько) считается произвольно фиксированным, и затем ищется решение задачи так, как обычно обращаются с уравнениями и неравенствами с одним неизвестным.

Ответом должно быть перечисление решений для каждого допустимого значения параметра.

Например, ответ при решении неравенства лучше всего записывать в виде:

при решений нет;

при имеем любое х из [7].

Отметим, что выяснение зависимости решений от значений параметра есть часть процесса решения задачи. Иногда это называют исследованием и отделяют от непосредственного решения. Необходимо запомнить и уяснить, что решение задачи с параметрами без такого этапа не дает решение. Задача нерешена!


1.2.Пример решения неравенства с параметром


Решить неравенство

.

Решение. 1) Находим естественную область определения. Это множество пар , при которых выражение, задающее задачу определено. Имеем, что .

2) Так как рассмотрим сначала случай . Тогда все пары , входящие в область определения, являются решениями.

3) Рассмотрим случай . Тогда . Исследуем дискриминант получившегося трехчлена. Он равен .

3.1. При действительных решений нет.

3.2. При , решая квадратное неравенство, имеем, что . Однако теперь надо согласовать полученное условие с условиями: и . Это при водит к системе неравенств: Получаем, что х должен быть больше (или равен) каждого из трёх чисел 0, . Поэтому надо знать, как они расположены на числовой оси в зависимости от параметра а. Рассмотрим варианты: а) первое число больше третьего .

б) первое число больше второго .

Получаем два случая: и .

3.2.1) Пусть . В этом случае из трех исходных чисел самым большим является первое – число 0. Остаются условия и .

3.2.2) Пусть . Теперь первое число меньше второго и третьего. Сравним второе и третье: .

Это не выполняется ни при каких а. Итак, в этом случае третье число наибольшее. Получили, что . Объединив все случаи, получим

Ответ. 1) если , то решений нет;

2) если , то ;

3) если , то .

Как уже отмечалось, задачи с параметрами могут бать по-разному классифицированы:

  • по виду математического выражения (линейные, квадратные и т.д.);

  • по количеству неизвестных и выражений (системы и т.д.);

  • по количеству параметров [7].

Выделены и классы методов их решения (формальный, геометрический и др.).

Пример математической модели.

Задача

Производственное объединение, в которое входят две мебельные фабрики, нуждается в обновлении парка станков. Причем первой мебельной фабрике нужно заменить три станка, а второй-семь. Заказы можно разместить на двух станкостроительных заводах. Первый завод может изготовить не более 6 станков, а второй завод примет заказ если их будет не мение трех. Требуется определить как размещать заказы [8].

Решение

Введем переменные: xij-количество станков, которое будет изготавливать i-й завод для j-й фабрики.

По условию задачи:

x11+x12hello_html_491de2da.png6

x21+x22hello_html_28538029.png3

Кроме того, должны выполняться условия:

x11+x21=3

x12+x22=7

Получаем систему ограничений в форме неравенств и уравнений:

x11+x21=3

x12+x22=7

x11+x12hello_html_491de2da.png6

x21+x22hello_html_28538029.png3

xijhello_html_28538029.png0; i=1,2; j=1,2;

Мы составили математическую модель нашей задачи. Решая систему мы найдем множество различных решений. Вот одно из них:

x11 = 2,

x12 = 3,

x21 = 1,

x22 = 4.

Оптимальное решение будет зависеть от других параметров, отдаленности заводов, цены на станки и т.д.



























Заключение


Таким образом, в ходе исследования мы проанализировали уравнения и неравенства как математические модели.

Рассмотрели:

  • примеры решения уравнений с параметрами как математической модели;

  • вид соотношений с выделенными параметрами;

  • пример решения неравенства с параметром.






















Список литературы


  1. Бантова М.А. Методическое пособие к учебнику математики. – М.: Просвещение, 2011. – 64 с.

  2. Гусева, Е.Н. Экономико-математическое моделирование. – М.: Флинта, 2011. – 439 с.

  3. Лагутин, М.Б. Наглядная математическая статистика. – М.: Бином. Лаборатория знаний, 2011. – 472 с.

  4. Трусов, П. Введение в математическое моделирование. – М.: Логос, 2009. – 440 с.

  5. Чикаш, С.Л. Математическая статистика в спорте. − Улан-Удэ: Издательство Бурятского госуниверситета, 2007. − 58 с.

  6. Шеломовский, В.В. Математическая статистика. – Мурманск: МГПУ, 2009. – 128 с.

  7. Уравнения и неравенства с параметрами как математические модели [Текст]: http://school-collection.iv-edu.ru/dlrstore/5d6a86b6-66ed-5934-b848-6708d909049d/11_13.doc

  8. Математическое моделирование [Текст]: http://www.wikiznanie.ru/ru-wz/index.php/Математическое_моделирование



Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy

Автор
Дата добавления 20.09.2016
Раздел Математика
Подраздел Научные работы
Просмотров68
Номер материала ДБ-203559
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх