Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Проектная работа "Математика и литература"

Проектная работа "Математика и литература"

  • Математика

Поделитесь материалом с коллегами:

Математика и литература. 

приложение
Математика и литература –
Две ветви человеческой культуры,
Две книги из одной библиотеки,
Две песни из единой фонотеки.
Такие  разные, как буква и число,
Неразделимые, как лодка и весло.
Что их роднит, объединяет в вечность?
Великой мысли дух и бесконечность!


Часто можно услышать такую фразу: «Ой, да что эта математика! Сухая наука. Выучил формулу — и решай задачи! Не то, что литература. Вот где красота и гармония». Да, так говорят многие. Но они забывают о том, что именно математика подарила нам такие слова как гармония, симметрия, пропорция. Каждому искусству присуще стремление к стройности, соразмерности, гармонии. Природа совершенна, и у нее есть свои законы, выраженные с помощью математики и проявляющиеся во всех искусствах. Как можно говорить о сухости математиков, если многие из них были поэтами, писателями? Как можно говорить о сухости математики, если многие известные поэты и писатели увлекались ею и сами составляли математические задачи в стихах и не только? Данная работа посвящена двум самым известным, и, казалось бы, ничем не связанным между собой наукам: математике и литературе. В связи с этим были поставлены следующие цели и задачи: 
— установить связь между математикой и литературой; 
— раскрыть эстетический потенциал математики;
— опровергнуть стереотип о сухости математиков;
— найти материалы, подтверждающие связь между литературой и математикой;
— использовать исторические сведения межпредметного характера;
— доказать присутствие математики в литературе.

1 Математика в стихах.

Известный ученый Диофант жил в III
веке, остальные известные факты его биографии исчерпываются таким стихотворением – загадкой, по преданию выгравированным на его надгробии:
«Путник! Здесь прах погребен Диофанта,
И числа поведать могут, о чудо, сколь долг был век его жизни.
Часть шестую его представляло счастливое детство.
Двенадцатая часть протекла еще жизни – 
Пухом покрылся тогда подбородок. 3
Седьмую в бездетном браке провел Диофант.
Прошло пятилетье. 
Он был осчастливлен рожденьем прекрасного первенца сына,
Коему рок половину лишь жизни счастливой и светлой
Дал на земле по сравненью с отцом.
И в печали глубокой старец земного удела конец воспринял,
Переживши года четыре с тех пор, как сына лишился.
Скажи, скольких лет жизни достигнув,
Смерть воспринял Диофант?»
Обозначим число лет жизни Диофанта за Х. Составим и решим уравнение:

Оказывается, в 84 года.

Но замечательным ученым Диофанта назвали не за умение решать такие уравнения. В его труде «Арифметика» есть уравнения первой степени с одним неизвестным, но главное в этой книге – решение так называемых неопределенных уравнений. 



2. Математические утверждения в поэзии 
«Судьба, как ракета, летит по параболе»
А.Вознесенский.
1. Поэты о математике
Многих поэтов и писателей издавна притягивала к себе математика.

Е.Винокуров признается в том, что ему с трудом даются самые элементарные математические факты и утверждения:
Я чуть не плакал. Не было удачи!
Задача не решалась – хоть убей.
Условье было трудным у задачи,
Дано:
«Летела стая лебедей…»
Я, щеку грустно подперев рукою,
Делил, слагал – не шли дела на лад!
Но, лишь глаза усталые закрою,
Я видел ясно: 
Вот они летят… 
Не скрывает своих эмоций по поводу разнообразных разделов математики поэт И.Снегова:
Математика – это трудно.
Это дар. С первых лет. От бога.
Слишком промахи в ней подсудны.
Слишком взыскивает с итога.
Уравненья, в которых скопом
Корни, степень, неравенств бездна.
Суть, замкнувшаяся по скобкам,
И – до дьявола неизвестных.
Или дроби… Ох, эти дроби!
И после всех этих признаний не удивительно, что автор заключает:
Ни одно из моих решений 
Не сходилось вовек с ответом.

2. Поэтическое обыгрывание математических понятий

1) Пустое множество – очень важное математическое понятие; при любом описании пустое множество оказывается одним и тем же – число элементов в нем равно нулю.
Спросил меня голос в пустыне дикой:
— Много ли в море растет земляники?
— Столько же, сколько селедок соленых 
Растет на березах и елках зеленых.
С.Я.Маршак
2) Доказательство от противного блестяще проведено в эпиграмме П.Сумарокова:
Что Клав меня лечил, слух этот, друг мой, лжив:
Когда б то было так, то как же б я был жив?
Разберем это поэтическое доказательство, выявляя его логическую структуру:
Требуется доказать: утверждение, что Клав лечил автора, ложно. Предположим, что это утверждение истинно. Тогда получили бы, что автор умер. Но нет сомнения, что разбираемые строки написаны автором в тот момент, когда он был жив. Следовательно, наше предположение, что Клав лечил автора, неверно.
3) Золотое и серебряное сечения свойственны совершенной стихотворной форме так же, как оно свойственно рекуррентному числовому ряду или гармоническим природным явлениям. Для обнаружения золотого сечения в стихах следует поделить число слогов или число стихов на число Ф, равное 1,618. Серебряное сечения— сечение, равное диаметру текста. Вот пример: стихотворение А.С. Пушкина «Надпись на стене больницы».
Вот здесь лежит больной студент;
Его судьба неумолима.
Несите прочь медикамент:
Болезнь любви неизлечима. (1817) 
Диаметр – «
судьба», Золотое сечение – «прочь»,
Серебряное сечение – «
медикамент». 
Это открытие принадлежит Андрею Чернову – петербургскому поэту и переводчику «Слова о полку Игореве» В настоящее время исследования продолжаются. Также он сделал сенсационное открытие. Он нашел, что построение стихов древнерусского памятника «Слово о полку Игореве» подчиняется математическим законам. Исследования позволили Чернову сделать заключение о том, что в основу «Слова о полку Игореве», состоящего из девяти песен, легла круговая композиция. Тогда возникла мысль: в композиционном построении поэмы круг, значит, должны быть «диаметр» и некая математическая закономерность. И уже первые расчеты стали подтверждать это. Оказалось, что если число стихов во всех трех частях (их 804) разделить на число стихов в первой и последней части (256), получается 3,14, то есть число пи с точностью до третьего знака!
3. Математики — поэты
«Математик, который не есть поэт, не 
будет никогда подлинным математиком»
Карл Вейерштрасс


Омар Хайям (1048 – 1131)

Персидский математик, геометр, физик, астроном, философ, историк, правовед, врачеватель и лингвист Гийас ад-Дун Абу-л-Фатх ибн Ибрахим Омар Хайям известен как автор поэтических четверостиший (рубайат). Вот самое знаменитое:
Чтоб мудро жизнь прожить, знать надобно немало.
Два важных правила запомни для начала:
Ты лучше голодай, чем что попало есть, 
И лучше будь один, чем вместе с кем попало.
Его стихи – точные, острые, и актуальны по сей день. 



Николай Иванович Лобачевский (1792 – 1856)
Известный ученый, создатель неевклидовой геометрии Н.И. Лобачевский в молодости написал стихотворение «Разлив Волги при Казани»:
Царица рек, в торжественном теченье
К далеким Каспия обширного водам
Ты уклоняешься к Казани на свиданье
С ней – древней матерью татарским городам!.. 
Ужели и твоих иссякнет волн стремленье – 
И Волга зарастет болотною травой?
И, где суда твои крылатые сквозили,
Увязнет странника усталая нога?
Куда они с собой веселье привозили – 
Осиротелые умолкнут берега!..
Нет!.. бытие твое до вечности продлится, 
Как память ясная великих дел.
Великое в веках бессмертием хранится 
И не ему ничтожество – удел.
Вот образ мирного могущества России!
Ее разлив не страшен никому.
Великодушие обуздывает силы,
Всегда, везде покорные ему.
Задачи в художественных произведениях
Математики в литературных произведениях предостаточно. Если внимательно подумать, можно найти доказательство и этому, казалось бы, абсурдному, утверждению. Итак, где же искать эту математику?
1) В названии произведения: «Три мушкетера» — А.Дюма, «Два капитана» — Каверин, «Десять негритят» — А.Кристи, «Тысяча и одна ночь» — сборник арабских сказок, «Двенадцать стульев» — И. Ильф и Е. Петров.
2) В тексте произведения.

В некоторых художественных произведениях встречаются математические задачи. 
Эти задачи ставят перед читателями авторы некоторых романов, повестей, рассказов, как правило, между — делом зачастую сами не обращая на это внимания. А сами авторы часто рассматривают математическую задачу как деталь, фон, эпизод своего повествования. Но были писатели, которые серьезно интересовались математикой и придумали немало интересных задач. Если читатель любитель математики, от него такая задача не ускользнет! Он не упустит случая разобраться, что это там предложил автор: разрешима задача или нет, сколько решений, можно ли обобщить и т.п. Иногда автор бывает столь любезен, что вместе с условием задачи приводит и решение. Но это явление редкое. Чаще дается лишь условие. Перейдем к конкретным примерам.

Задача №1. 

Из двух городов выезжают по одному направлению два путешественника, первый позади второго. Проехав число дней, равное сумме чисел верст, проезжаемых ими в день, они съезжаются и узнают, что второй проехал 525 верст. Сколько верст в день проезжает каждый?
Л. Кассиль «Кондуит и Швамбрания» кн. 2, гл. « Задача с путешественниками».
Решение.
1) 175+525 = 700 (верст) проехал первый путешественник.
2) Пусть Х – число дней, которое проехал каждый путешественник. . Итак, 
20 верст проехал первый путешественник, 15 верст проехал второй путешественник.

Задача №2.
Потом отец Федор подошел к комоду и вынул из конфетной коробки 50 рублей трехрублевками и пятирублевками. В коробке оставалось еще 20 рублей.
И. Ильф, Е. Петров « Двенадцать стульев».
Здесь даже не сформулирован вопрос, но он напрашивается сам собой: сколько трех – и пятирублевок отец Федор взял и сколько оставил? Ну, а чтобы обеспечить единственность решения, добавим дополнительное условие: отец Федор взял с собой большую часть трехрублевок и большую часть пятирублевок. Как ни странно, этого вполне достаточно. А теперь найдем решение задачи: отец Федор взял 
десять трехрублевок и четыре пятирублевки, оставил пять трехрублевок и одну пятирублевку.

Задача №3.

Вот пистолеты уж блеснули,
Гремит о шомпол молоток.
В граненый ствол уходят пули, 
И щелкнул в первый раз курок.
Вот порох струйкой сероватой
На полку сыплется. Зубчатый, 
Надежно ввинченный кремень
Взведен еще. За ближний пень
Становится Гильо смущенный. 
Плащи бросают два врага.
Зарецкий тридцать два шага
Отмерил с точностью отменной,
Друзей развел по крайний след,
И каждый взял свой пистолет,

ХХХ
«Теперь сходитесь».
Хладнокровно,
Еще не целя во врага
Походкой твердой, тихо, ровно
Четыре перешли шага,
Четыре смертные ступени.
Свой пистолет тогда Евгений,
Не преставая наступать,
Стал первым тихо подымать.
Вот пять шагов еще ступили,
И Ленский, жмуря левый глаз,
Стал также целить – но как раз
Онегин выстрелил… Пробили 

Часы урочные: поэт
Роняет молча пистолет...
А.С. Пушкин «Евгений Онегин»
Поставим вопрос: со скольки шагов стрелялись Онегин и Ленский?
Решение. 32 – (4 + 4) – (5 + 5) = 14. Т.о. делаем вывод: Онегин и Ленский стрелялись с расстояния в 14 шагов. Согласитесь, расстояние настолько маленькое, что промахнуться на этой дуэли практически невозможно. 
Задача №4.
В романе Жюля Верна «Таинственный остров» описано применение теоремы о подобных треугольниках для измерения высоты плато Кругозора над уровнем моря. 

Нужно было дополнить данные вчерашних наблюдений, измерив высоту плато Кругозора над уровнем моря.
— Вам, наверно, понадобится измерительный прибор вроде вчерашнего? – спросил инженера Герберт. 
— Нет, дитя мое – ответил Сайрес Смит, — мы применим другой прием, обеспечивающий, пожалуй, не меньшую точность.
Сайрес Смит захватил с собою прямую ровную жердь длиной около «12 футов» 12 футов – длину он определил по собственному росту, который он знал совершенно точно. Герберту Сайрес Смит поручил нести отвес, то есть гибкую лиану, к концу которой был привешен обыкновенный камень. 

Остановившись шагах в 20 от кромки моря и шагах в 500 от гранитного кряжа, Сайрес Смит воткнул жердь в песок и старательно выпрямил ее, добившись путем выверки отвесом, чтобы она стояла перпендикулярно к плоскости горизонта.

Сделав это, Сайрес Смит отошел и лег на землю на таком расстоянии, чтобы в поле его зрения находился и верхний конец жерди и гребень гранитной стены. Это место он отметил на песке колышком и, повернувшись к Герберту, спросил:
— Ты знаком с геометрией? Помнишь свойства подобных треугольников?
— Да, — ответил юноша, — у подобных треугольников соответствующие стороны 
пропорциональны друг другу. 
— Так вот, дитя мое, у меня тут два подобных треугольника, — один поменьше, в нем двумя сторонами будут жердь, воткнутая перпендикулярно в песок, и прямая, равная расстоянию от нижнего конца жерди до колышка, а гипотенузой – мой луч зрения; у второго треугольника сторонами явятся: отвесная линия гранитной стены, высоту которой нам нужно измерить, расстояние от колышка до подошвы стены, а в качестве гипотенузы – мой луч зрения, то есть продолжение гипотенузы первого треугольника. 
Основания обоих треугольников были измерены при помощи той же самой жерди, высота которой над поверхностью песка равнялась «10 футам»; оказалось, что расстояние между колышком и жердью – «15 футов, а расстояние между колышком и подошвой стены «500 футов». 
И на этой аспидной доске Сайрес Смит составил следующую пропорцию:
15:500 = 10: Х

Заключение
В ходе работы нами были сделаны следующие выводы:
— существует связь между математикой и литературой;
— математика обладает большим эстетическим потенциалом;
— был опровергнут стереотип о сухости математиков;
— найдены материалы, подтверждающие связь между литературой и математикой;
— использованы исторические сведения межпредметного характера;
— доказано присутствие математики в литературе.

Математика и литература не так далеки друг от друга, как многие думают. Искусство и наука требуют фантазии, творческой смелости, зоркости в наблюдении различных 
явлений жизни. Служение науке многие математики представляют себе неотрывным от служения литературе. Поэт должен видеть то, чего не видят другие, видеть глубже других. А это должен и математик. 


Автор
Дата добавления 06.10.2016
Раздел Математика
Подраздел Конспекты
Просмотров16
Номер материала ДБ-240571
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх