Инфоурок Математика Другие методич. материалыПроектно исследовательская работа "Теория графов"

Проектно исследовательская работа "Теория графов"

Скачать материал

 

Цель исследования:

-рассмотреть возможности применения графового аппарата для решения логических и комбинаторных задач.

 

Задачи исследования:

1.     рассмотреть решение задач при помощи графов;

2.     научиться переводить задачи на язык графов;

3.     сравнить традиционные методы решения задач с методами теории графов.

 

Актуальность исследования:

Графы используют во всех отраслях нашей жизни. Знание основ теории графов необходимо в различных областях, связанных с управлением производством, бизнесом (например, сетевой график строительства, графики доставки почты), построении путей транспортировки и доставки, решении задач. Графы используют в связи с развитием теории вероятностей, математической логики и информационных технологий.

 

Гипотеза:

 Использование теории графов делает решение многих логических и комбинаторных задач будет менее трудоемким.

 

 

 

 

 

Содержание:

 

1.     Введение. Понятие графа.

2.     История возникновения теории графов. Классическая задача о кёнигсбергских мостах.

3.      Основные свойства графа.

4.     Понятие эйлерова и гамильтонова циклов.

5.     Понятие полного графа. Свойства плоских графов.

6.     Основные понятия теории графов и их доказательства.

7.     Избранные задачи.

8.     Классическая «задача коммивояжёра». «Жадные» алгоритмы.

9.     Хроматическое число графа.

10.  Комбинаторные и  логические задачи.

11.  Заключение. Приложение   теории    графов    в   различных  областях  науки и техники.  

12.   Литература.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение. Понятие графа.

Любой из нас, конечно, прав,

Найдя     без       проволочек,

        Что он…обыкновенный граф

                                                                               Из палочек и точек.

Теория графов в настоящее время является интенсивно развивающимся разделом дискретной математики. Графы и связанные с ним методы исследований органически пронизывают на разных уровнях едва ли не всю современную математику. Язык графов прост, понятен и нагляден.    Графовые  задачи обладают рядом достоинств, позволяющих использовать их для развития соображения, улучшения логического мышления, применения смекалки. Графы – замечательные математические объекты, с их помощью можно решать очень много различных, внешне не похожих друг на друга задач.

В математике существует целый раздел – теория графов, который изучает графы, их свойства и применение. Математические графы с дворянским титулом «граф» связывает общее происхождение от латинского слова «графио» - пишу. Типичными графами являются схемы авиалиний, которые часто вывешивается в аэропортах, схемы метро, а на географических картах – изображение железных дорог. Выбранные точки графа называются его вершинами, а соединяющие их линии – ребрами. Один из графов хорошо знаком москвичам и гостям столицы – это схема московского метрополитена: вершины – конечные станции и станции пересадок, рёбра – пути, соединяющие эти станции. Генеалогическое древо графа Л. Н. Толстого – ещё один граф. Здесь вершины – предки писателя, а рёбра показывают родственные связи между ними.

 

 

 

 

 

 

 

 рис.1                                                                                      рис. 2                  

 

Слово «граф» в математике означает картинку, где нарисовано несколько точек, некоторые из которых соединены линиями.При изображении графа не имеет значения расположение вершин на плоскости, кривизна и длина рёбер  (рис.3).Вершины графов обозначаются буквами или натуральными числами. Ребра графа – пары чисел.

 

 

 

 

                                             рис. 3

Графами являются блок – схемы программ для ЭВМ, сетевые графики строительства, где вершины – события, означающие окончания работ на некотором участке, а ребра, связывающие эти вершины, - работы, которые возможно начать по совершении одного события и необходимо выполнить для совершения следующего.Свойства графов, как и их изображения,  не будут зависеть и не изменятся  от того, соединены вершины отрезками или кривыми линиями. Это дает возможность изучения их свойств с помощью одной из молодых наук – топологии, хотя сами задачи теории графов являются типичными задачами комбинаторики.

Что же связывает топологию и комбинаторику? Теория графов является частью как топологии, так и комбинаторики. То, что это топологическая теория, следует из независимости свойств графа от расположения вершин и вида соединяющих их линий. А удобство формулировок комбинаторных задач в терминах графов привело к тому, что теория графов стала одним из мощнейших аппаратов комбинаторики.

Но кто придумал эти графы? Где они применяются? Все ли они одинаковые или есть разновидности?

 

История возникновения теории графов. Классическая задача о кёнигсбергских мостах.

Основы теории графов как математической науки заложил в 1736 году Леонард Эйлер, рассматривая задачу о кёнигсбергских мостах.«Мне была предложена задача об острове, расположенном в городе Кёнигсберге и окружённом рекой, через которую перекинуто 7 мостов. Спрашивается, может ли кто – нибудь непрерывно обойти их, проходя только однажды через каждый мост…» (Из письма Л. Эйлера итальянскому математику и инженеру Маринони от 13 марта 1736 года)

Бывший Кенигсберг (ныне Калининград) расположен на реке Прегель. В пределах города река омывает два острова. С берегов на острова были перекинуты мосты. Старые мосты не сохранились, но осталась карта города, где они изображены (рис.4). Кенигсбергцы предлагали приезжим следующую задачу: пройти по всем мостам и вернуться в начальный пункт, причём на каждом мосту следовало побывать только один раз. Прогуляться по городским мостам предложили  и Эйлеру. После безуспешной попытки совершить нужный обход,  он начертил упрощённую схему мостов. Получился граф, вершины которого – части города, разделённые рекой, а рёбра – мосты (рис.5).

 

 

 

                  рис. 4                                                                рис. 5

Прежде, чем обосновать возможность требуемого маршрута, Эйлер рассмотрел и другие, более сложные карты. В итоге он доказал общее утверждение для того чтобы можно было обойти все рёбра графа по одному разу и вернуться в исходную вершину, необходимо и достаточно выполнение следующих двух  условий:

1)    из любой вершины графа должен существовать путь по его рёбрам в любую другую вершину (графы, удовлетворяющие этому требованию, называются связными);

2)    из каждой вершины должно выходить чётное количество рёбер. 

Фрагмент   письма   Карлу Готлибу Элеру от 3 апреля 1736 года:

«Следовательно, надо держаться следующего правила: если на каком-либо рисунке число мостов, ведущих в некоторую область, будет нечетным, тогда желаемый переход через все мосты одновременно не может быть осуществлен иначе, как если переход или начинается, или заканчивается в этой области. А если число мостов четное, отсюда не может возникнуть никакого затруднения, так как ни начало, ни конец перехода при этом не фиксируются. Отсюда следует такое общее правило: если будет больше чем две области, к которым ведет нечетное количество мостов, тогда желательный переход вообще не может быть совершен. Ибо представляется совершенно невозможным, чтобы переход и начинался, и заканчивался в какой-нибудь одной из этих областей. А если будут только две области такого рода (так как не могут быть даны одна область этого рода или нечетное число областей), тогда может быть совершен переход через все мосты, но с таким условием, чтобы начало перехода было в одной, а конец в другой из этих областей. Когда в предложенной фигуре А и В есть области, к которым ведет нечетное число мостов, а число мостов, ведущих к С, является четным, то я считаю, что переход или построение мостов может иметь место, если переход начинается или из А, или из В, а если же кто-нибудь пожелает начать переход из С, то он никогда не сможет достигнуть цели. В расположении кенигсбергских мостов я имею четыре области А, В, С, D, взаимно отделенные друг от друга водой, к каждой из которых ведет нечетное число мостов (рис.6).

 

 

 

 

 

рис. 6

Следовательно, ты можешь убедиться, славнейший муж, что это решение по своему характеру, по-видимому, имеет мало отношения к математике, и мне непонятно, почему следует скорее от математика ожидать этого решения, нежели от какого-нибудь другого человека, ибо это решение подкрепляется одним только рассуждением и нет необходимости привлекать для нахождения этого решения какие-либо законы, свойственные математике. Итак, я не знаю, каким образом получается, что вопросы, имеющие совсем мало отношения к математике, скорее разрешаются математиками, чем другими [учеными]. Между тем ты, славнейший муж, определяешь место этого вопроса в геометрии положения, и что касается этой новой науки, то, признаюсь, мне неизвестно, какого рода относящиеся сюда задачи желательны были Лейбницу и Вольфу. Итак, я прошу тебя, если ты считаешь, что я способен нечто создать в этой новой науке, чтобы ты соблаговолил мне прислать несколько определенных, относящихся к ней задач...»

 

 

Основные свойства графа.

Решая задачу про Кенигсбергские мосты, Эйлер установил следующие свойства графа:

1.     Если все вершины графа чётные, то можно одним росчерком (т.е. не отрывая карандаша от бумаги и не проводя дважды по одной и той же линии) начертить граф.

2.     Граф с двумя нечётными вершинами тоже можно начертить одним росчерком. Движение нужно начинать от любой нечётной вершины, а заканчивать на другой нечётной вершине.

3.     Граф с более чем двумя нечётными вершинами, невозможно начертить одним росчерком.

 

Понятие эйлерова и  гамильтонова циклов.

Замкнутый путь, проходящий по одному разу по всем рёбрам, до сих пор называют эйлеровым циклом.

Если отбросить условие возвращения в исходную вершину, то можно допустить наличие двух вершин, из которых выходит нечётное количество рёбер. В этом случае начинать движение следует из одной из этих вершин, а заканчивать в другой.

В задаче о Кенигсбергских мостах все четыре вершины соответствующего графа – нечётные, значит, нельзя пройти по всем мостам ровно один раз и закончить путь там же.

Граф получить на листе бумаги очень просто. Надо взять карандаш и нарисовать на этом листке, не отрывая карандаша от бумаги и не проводя дважды по одной линии, что угодно. Отметить точками «перекрёстки» и начальную и конечную точки, если они не совпадают с «перекрёстками». Получившуюся фигуру можно назвать графом. Если начальная и конечная точки рисунка совпадают, то все вершины окажутся чётными, если же начальная и конечная точки не совпадают, то они окажутся нечётными вершинами, а все остальные будут чётными. Решение многих логических задач с помощью графов вполне доступно уже младшим школьникам. Для этого им достаточно иметь лишь интуитивные представления о графах и самых очевидных их свойствах.Во многих детских головоломках можно встретить такие задания: начертить фигуру, не отрывая  карандаша от бумаги и не проводя дважды по одной линии.

 

 

 

 

 

 

 


 рис. 7   а)                                                        б)

Рисунок 7 (а) имеет две вершины (нижние), из которых выходит нечётное количество рёбер. Поэтому рисунок нужно начинать с одной из них, а в другой заканчивать.  В рисунке 7(б) существует эйлеров  цикл, так как из шести вершин графа выходит чётное число рёбер.

В 1859 г. сэр Вильям Гамильтон, знаменитый ирландский математик, давший миру теорию комплексного числа и кватерниона, предложил необычную детскую головоломку, в которой предлагалось совершить «кругосветное путешествие» по 20 городам, расположенным в различных частях земного шара (рис. 8). В каждую вершину деревянного додекаэдра, помеченную названием одного из известных городов (Брюссель, Дели, Франкфурт и т. д.), был вбит гвоздик и к одному из них была привязана нить.Требовалось соединить вершины додекаэдра этой нитью так, чтобы она проходила вдоль его ребер, обвивая каждый гвоздик ровно один раз, и чтобы полученный в результате ниточный маршрут был замкнутым (циклом).Каждый город соединялся дорогами с тремя соседними так, что дорожная сеть образовывала 30 ребер додекаэдра, в вершинах которого находились города a, b ... t. Обязательным условием было требование посетить каждый город, за исключением первого, лишь один раз.

 

 

 

 

 

 

                          рис. 8                                                              рис. 9

         Если путешествие начать из города a, то последними должны быть города b, e или h, иначе мы не сможем вернуться в первоначальный пункт a. Непосредственное исчисление  показывает, что число таких замкнутых маршрутов равно 60.Можно потребовать посещения всех городов строго по одному разу, включая и первый, т.е. допускается окончание путешествия в любом городе (например, предполагается, что в начальный пункт можно будет вернуться самолетом). Тогда общее число цепных маршрутов увеличится до 162 (рис.9).

В  этом же, 1859 году  Гамильтон предложил владельцу фабрики игрушек в Дублине запустить её в производство. Владелец фабрики принял предложение Гамильтона и выплатил ему 25 гиней. Игрушка напоминала «кубик Рубик», ещё не так давно пользующегося огромной популярностью, и оставила заметный след в математике. Замкнутый путь по рёбрам графа, проходящий по одному разу через все вершины, называется гамильтоновым циклом. В отличие от эйлерова цикла условия существования на произвольном графе гамильтонова цикла до сих пор не установлены.

 

 

 

 

 Понятие полного графа. Свойства плоских графов.

А всегда ли граф можно изобразить на плоскости так, чтобы его рёбра не пересекались? Оказывается, нет. Графы, для которых это  возможно, называются плоскими. Графы, в которых не построены все возможные ребра, называются неполными графами, а тот граф, в котором соединены все вершины всеми возможными способами, называется полным графом.

 

 

 

 

 

                   рис. 10                                                                  рис. 11

На рисунке 10 изображён граф с пятью вершинами, который не укладывается на плоскость без пересечения рёбер. Каждые две вершины этого графа соединены ребром. Это полный граф.  На рисунке 11 – граф с шестью вершинами и девятью рёбрами. Он носит название «домики – колодцы». Оно произошло от старинной задачи – головоломки. В трёх избушках жили трое друзей. Около их домиков находились три колодца:  один с солёной водой, второй – со сладкой,  третий – с пресной. Но однажды друзья поссорились, да так, что и видеть друг друга не хотели. И решили они по- новому проложить тропинки от домов к колодцам, чтобы их пути не пересекались. Как это сделать? На рисунке 12 проведено восемь из девяти тропинок, но провести девятую уже не удаётся.

рис.12

Польский математик Казимеж Куратовский установил, что никаких принципиально иных не плоских графов не существует. Точнее, если граф «не укладывается» на плоскость, то в нём «сидит» по крайней мере один из этих двух графов (полный граф с пятью вершинами или «домики – колодцы»), быть может с дополнительными вершинами на рёбрах.

Льюис Кэрролл, автор книги «Алиса в стране чудес», любил давать своим знакомым следующую головоломку. Он просил обвести фигуру, изображённую на рисунке, не отрывая карандаша от бумаги и не проводя дважды по одной линии. Подсчитав чётность вершин, убеждаемся, что эта задача легко решается, причём начинать обход можно с любой вершины, так как они все чётные. Однако, он усложнял задачу тем, что требовал, чтобы при обводке линии не пересекались. Справиться с этой проблемой можно следующим способом. Раскрасим фигуру так, чтобы её граничащие части оказались разного цвета. Затем разъединим пересекающиеся линии таким образом, чтобы закрашенная часть представляла из себя единый кусок. Теперь остаётся обвести по краю одним росчерком закрашенную область – это и будет искомая линия (рис. 13).

 

 

 

 

рис. 13 

 

Основные понятия теории графов и их доказательства.

 Плоские графы обладают многими интересными свойствами. Так, Эйлер обнаружил простую связь между количеством вершин (B), количеством рёбер (Р),количеством частей (Г) на которые граф  разделяет  плоскость

В – P + Г = 2.

  1. Определение. Число рёбер, выходящих из одной вершины, называют степенью этой вершины.

Лемма1. Число рёбер в графе ровно в 2 раза меньше, чем сумма степеней вершин.

Доказательство. Любое ребро графа связывают 2 вершины. Значит, если будем складывать число степеней всех вершин графа, то получим удвоенное число рёбер, т.к. каждое ребро было подсчитано дважды.

Лемма2. Сумма степеней вершин графа чётна.

Доказательство. По лемме1 число рёбер в графе в 2 раза меньше суммы степеней вершин, значит сумма степеней вершин чётна (делится на 2).

2. Определение. Если степень вершины чётная, то вершина называется чётной, если степень не чётная, то вершина нечётная.

Лемма3. Число нечётных вершин графа чётно.

Доказательство. Если в графе есть n чётных и k нечётных вершин, то сумма степеней чётных вершин чётна. Сумма степеней нечётных вершин нечётна, если количество этих вершин нечётна. Но тогда общее число степеней вершин тоже нечётна, чего не может быть. Значит, k чётно.

Лемма 4.Если полный граф имеет n вершин, то количество ребер будет    равно 

Доказательство. В полном графе с n вершинами из каждой вершины выходит по n-1 рёбер. Значит, сумма степеней вершин равна n (n-1). Число рёбер в 2 раза меньше, то есть .

 

 

Избранные задачи.

Зная свойства графа, полученные Эйлером, теперь легко можно решить такие задачи:

Задача 1.  Из трех человек, стоящих рядом, один всегда говорит правду (правдолюб), другой всегда лжет (лжец), а третий, смотря по обстоятельствам, говорит либо правду, либо ложь (дипломат). У стоящего слева спросили: "Кто стоит рядом с тобой?". Он ответил: "Правдолюб". Стоящему в центре задали вопрос: "Кто ты?", и он ответил: "Я дипломат". Когда у стоящего справа спросили: "Кто стоит рядом с тобой?", он сказал: "Лжец". Кто где стоял?

  Решение: Если в данной задаче ребро графа будет соответствовать месту,занимаемому тем или иным человеком, то нам могут представиться следующие возможности.

Рассмотрим первую возможность. Если "правдолюб" стоит слева, то рядом с ним, судя по его ответу, также стоит "правдолюб". У нас же стоит "лжец". Следовательно, эта расстановка не удовлетворяет условию задачи. Рассмотрев таким образом все остальные возможности, мы придем к выводу, что позиция "дипломат", "лжец", "правдолюб" удовлетворяет задаче. Действительно,  если "правдолюб" стоит справа, то, по его ответу, рядом с ним стоит "лжец", что выполняется. Стоящий в центре заявляет, что он "дипломат", и, следовательно, лжет (что возможно из условия), а стоящий справа также лжет. Таким образом, все условия задачи выполнены.

 

Задача 2. В 10-значном числе каждые две подряд идущие цифры образуют двузначное число, которое делится на 13. Докажите, что среди этих цифр нет цифры 8.

Решение. Существует 7 двузначных чисел, которые делятся на 13. Обозначим эти числа точками и применим определение графа. По условию каждые 2 подряд идущие цифры образуют двузначное число, которые делятся на 13, значит цифры, из которых состоит 10-значное число, повторяются. Соединим вершины графа рёбрами так, чтобы цифры, входящие в этот граф повторялись.

     13                                                        65

                                     78

 

91                      39                                                               52       

                                                           26

Из построенных графов видно, что среди цифр 10-значного числа цифры 8 быть не может.

Задача 3. В деревне 10 домов, и из каждого выходит по 7 тропинок, идущих к другим домам. Сколько всего тропинок приходит между домами?

Решение. Пусть дома - вершины графа, тропинки - рёбра. По условию из каждого дома (вершины) выходит 7 тропинок (рёбер), тогда степень каждой вершины 7, сумма степеней вершин 7×10=70, а число рёбер 70: 2= 35. Таким образом между домами проходит 35 тропинок.

Задача 4: Между 9 планетами Солнечной системы введено космическое сообщение. Ракеты летают по следующим маршрутам: Земля-Меркурий, Плутон-Венера, Земля-Плутон, Плутон-Меркурий, Меркурий-Венера, Уран-Нептун, Нептун-Сатурн, Сатурн-Юпитер, Юпитер-Марс и Марс-Уран. Можно ли добраться с Земли до Марса?

Решение. Нарисуем схему: планетам будут соответствовать точки, а соединяющим их маршрутам - непересекающиеся между собой линии.

Сделав набросок рисунка маршрутов, мы нарисовали граф, соответствующий условию задачи. Видно, что все планеты Солнечной системы разделились на две не связанных между собой группы. Земля принадлежит одной группе, а Марс - второй. Долететь с Земли до Марса нельзя.

 

 

 

Классическая «задача коммивояжёра».  «Жадные» алгоритмы.

Одна из классических задач теории графов называется «задачей коммивояжёра» или «задачей о бродячем торговце». Представим себе торгового агента, который должен побывать в нескольких городах и вернуться обратно. Известно, какие дороги соединяют эти города и каковы расстояния между этими городами по данным дорогам. Нужно выбрать самый короткий маршрут. Это же не «игрушечная» задача. Например, водитель почтового автомобиля, вынимающий письма из почтовых ящиков, очень хотел бы знать кратчайший маршрут, как и водитель грузовика, развозящий товары по киоскам. А решить эту задачу довольно – таки сложно, потому что число вершин графа очень велико. А вот другая задача, в некотором смысле противоположная задаче коммивояжёра. Предполагается проложить железную дорогу, которая соединит несколько крупных городов. Для любой пары городов известна стоимость прокладки пути между ними. Требуется найти наиболее дешёвый вариант строительства. На самом деле алгоритм нахождения оптимального варианта строительства довольно прост. Продемонстрируем его на примере дороги, соединяющей пять городов А, В,  С, D и Е. Стоимость прокладки пути между каждой парой городов  указана в таблице (рис.14), а расположение городов на карте  (рис.15)

 

А

В

С

D

Е

А

 

1,5

1

2

2,5

В

1,5

 

1,2

3

0,8

С

1

1,2

 

1,1

0,9

D

2

3

1,1

 

2,7

Е

2,55

ис.е, а расположеие городов аждой паройдов А, В С тагрузовика, разво

0,8

0,9

2,7

 

 

 

 

 

 

 

 

 


                     рис.14                                                                  рис. 15

 

Сначала строим ту дорогу, которая имеет наименьшую стоимость. Это маршрут В →Е. Теперь найдём самую дешёвую линию, соединяющую В или Е с каким-нибудь из городов. Это путь между Е и С. Включаем его в схему. Далее поступаем аналогично – ищем самый дешёвый из путей, соединяющих один из городов В, С, Е с одним из оставшихся – А или D. Это дорога между С и А. Осталось подключить к железнодорожной сети город D.

Овал: ВДешевле всего соединить его с С. Получим сеть железнодорожных путей (рис. 16).

 

 

 

 

 

 


рис. 16

 

Этот алгоритм нахождения оптимального варианта строительства железной дороги относится к категории «жадных»: на каждом шаге решения этой задачи мы выбираем самое дешёвое продолжение пути. Для данной задачи он подходит как нельзя лучше. Но в задаче о коммивояжёре «жадный» алгоритм не даст оптимального решения. Если с самого начала выбирать самые «дешёвые» элементы, т.е. кратчайшие расстояния, то не исключено, что в конце концов придётся воспользоваться очень «дорогими» - длинными, и общая длина маршрута окажется существенно выше оптимальной.

 Итак, для решения  некоторых задач можно использовать метод или алгоритм, который называется «жадным». «Жадный» алгоритм – алгоритм нахождения наикратчайшего расстояния путём выбора самого короткого, ещё не выбранного ребра, при условии, что оно не образует цикла с уже выбранными рёбрами. «Жадным» этот алгоритм назван потому, что на последних шагах приходится жестоко расплачиваться за жадность. Посмотрим, как поведет себя при решении задачи о коммивояжёре «жадный» алгоритм. Здесь он превратится в стратегию «иди в ближайший (в который еще не входил) город». Жадный алгоритм, очевидно, бессилен в этой задаче. Рассмотрим для примера сеть на рисунке 17, представляющую узкий ромб. Пусть коммивояжер стартует из города 1. Алгоритм «иди в ближайший город» выведет его в город 2, затем 3, затем 4; на последнем шаге придется платить за жадность, возвращаясь по длинной диагонали ромба. В результате получится не кратчайший, а длиннейший тур. Однако в некоторых ситуациях «жадный» алгоритм определяет-таки кратчайший путь.

 

 


           4                                                                                       3

Овал: 3
 

 


рис. 17

         Есть ещё один метод для решения подобных задач - метод полного перебора (иногда говорят Метод перебора, подразумевая при этом полный перебор - это не совсем правильно, так как перебор может быть и не полным), который заключается в том, что выполняется перебор всех возможных комбинаций точек (пунктов назначения). Как известно из математики, число таких перестановок равно n!, где n – количество точек. Так как в задаче коммивояжера исходный пункт обычно принимается одним и тем же (первая точка), то нам достаточно перебрать оставшиеся, т.е. количество перестановок будет равно (n–1)!.  Этот алгоритм почти всегда дает точное решение задачи коммивояжера, однако продолжительность таких вычислений может занять непозволительно много времени. Известно, что при значениях n > 12, современный компьютер не смог бы решить задачу коммивояжера даже за все время существования вселенной.           Существуют и другие алгоритмы для решения задачи коммивояжера, которые значительно точнее «жадного» алгоритма и значительно быстрее метода полного перебора. Однако мы рассматриваем графы, а эти методы не связаны с теорией графов.

 

Хроматическое число графа.

Задача о раскраске географической карты

Дана географическая карта, на которой изображены страны, разделяемые границами. Требуется раскрасить карту так, чтобы страны, имеющие общие участки границы, были окрашены в разные цвета, и чтобы при этом было использовано минимальное количество цветов.

По данной карте построим граф следующим образом. Поставим в соответствие странам карты вершины графа. Если какие-то две страны имеют общий участок границы, то соответствующие им вершины соединим ребром, в противном случае – нет.Легко видеть, что раскраске карты соответствует правильная раскраска вершин полученного графа, а минимальное количество необходимых красок равно хроматическому числу этого графа.

Хроматическим числом графа называется наименьшее количество красок, с помощью которых можно так раскрасить вершины графа, что любые две вершины, соединенные ребром, окрашиваются при этом в разные цвета. Долгое время математики не могли решить такую проблему: достаточно ли четырех красок, для того чтобы раскрасить произвольную географическую карту так, чтобы любые две страны, имеющие общую границу, были окрашены разными красками? Если изобразить страны точками – вершинами графа, соединив ребрами те вершины, для которых соответствующие им страны граничат (рис.18), то задача сведется к следующей: верно ли, что хроматическое число любого графа, расположенного на плоскости не больше четырех?  Положительный ответ на этот вопрос был лишь недавно получен с помощью ЭВМ.

 

 

 

 

 

 

 

 

 

 

 

 

рис. 18

 

 

Игра «четыре краски»

Стивен Барр предложил логическую игру на бумаге для двух игроков, названную «Четыре краски». По словам Мартина Гарднера — «Я не знаю лучшего способа понять трудности, которые встречаются на пути решения проблемы четырёх красок, чем просто поиграть в эту любопытную игру»

Для этой игры нужны четыре цветных карандаша. Первый игрок начинает игру, рисуя произвольную пустую область. Второй игрок закрашивает её любым из четырёх цветов и в свою очередь рисует свою пустую область. Первый игрок закрашивает область второго игрока и добавляет новую область, и так далее — каждый игрок раскрашивает область соперника и добавляет свою. При этом области, имеющие общую границу, должны быть раскрашены в разные цвета. Проигрывает тот, кто на своём ходу вынужден будет взять пятую краску.

 

 

 

 

Комбинаторные и  логические  задачи.

 

В 1936 году немецкий математик Д. Кёниг впервые провёл исследование подобных схем и предложил называть такие схемы «графами» и систематически изучать их свойства. Итак, как отдельная математическая дисциплина теория графов была представлена лишь в 30 – е годы ХХ столетия в связи с тем, что в обиход вошли так называемые «большие системы», т.е. системы с большим числом объектов, связанных между собой разнообразными соотношениями: сети железных дорог и авиалиний, телефонные узлы на много тысяч абонентов, системы заводов – потребителей и предприятий – поставщиков, радиосхемы, большие молекулы и т.д. и т. п. Стало ясно, что разобраться в функционировании таких систем невозможно без изучения их конструкции, их структуры. Здесь и пригодилась теория графов. В середине XX века задачи теории графов стали возникать также и в чистой математике (в алгебре, топологии, теории множеств). Чтобы можно было применять теорию графов в столь разнообразных областях, она должна быть в высшей степени абстрактной и формализованной. Ныне она переживает эпоху бурного возрождения.Графы используются: 1) в теории планирования и управления, 2) в теории расписаний, 3) в социологии, 4) в математической лингвистике, 5) экономике, 6) биологии, 7) химии, 8) медицине, 9) в областях прикладной математики таких, как теория автоматов, электроника, 10) в решении вероятностных и комбинаторных задач и т.д. Наиболее близки к графам – топология и комбинаторика.

Комбинато́рика (Комбинаторный анализ) — раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления элементов) и отношения на них (например, частичного порядка). Комбинаторика связана со многими другими областями математики — алгеброй, геометрией, теорией вероятностей и имеет широкий спектр применения в различных областях знаний (например в генетике, информатике, статистической физике). Термин «комбинаторика» был введён в математический обиход  Лейбницем, который в 1666 году опубликовал свой труд «Рассуждения о комбинаторном искусстве».Иногда под комбинаторикой понимают более обширный раздел дискретной математики, включающий, в частности, теорию графов.

Широкое развитие теория графов получила с 50-х гг. 20 в. в связи со становлением кибернетики и развитием вычислительной техники. Из современных математиков над графами работали - К. Берж, О. Оре, А. Зыков.

Графы часто используют для решения логических проблем, связанных с перебором вариантов. Для примера рассмотрим такую задачу. В ведре 8 л воды, и имеется две кастрюли емкостью 5 и 3 л. требуется отлить в пятилитровую кастрюлю 4 л воды и оставить в ведре 4 л, т. е. разлить воду поровну в ведро и большую кастрюлю. Ситуацию в каждый момент можно описать тремя числами, где А-количество литров воды в ведре, Б- в большой кастрюле, В - в меньшей. В начальный момент ситуация описывалась тройкой чисел (8, 0, 0), от нее мы можем перейти в одну из двух ситуаций: (3, 5, 0),если наполним водой большую кастрюлю, или (5,0, 3), если наполним меньшую кастрюлю. В результате получаем два решения: одно в 7 ходов, другое в 8 ходов.

Рассмотрим задачи, которые можно легко решить, начертив граф.

Задача №1. Андрей, Борис, Виктор и Григорий играли в шахматы. Каждый сыграл с каждым по одной партии. Сколько партий было сыграно?

Задача решается с помощью полного графа с четырьмя вершинами А, Б, В, Г, обозначенными по первым буквам имён каждого из мальчиков. В полном графе проводятся всевозможные рёбра. В данном случае отрезки-рёбра обозначают сыгранные шахматные партии. Из рисунка видно, что граф имеет 6 рёбер, значит, и партий сыграно 6 партий.

Ответ: 6 партий.

Задача №2. Андрей, Борис, Виктор и Григорий подарили на память друг другу свои фотографии. Причём каждый мальчик подарил каждому из своих друзей по одной фотографии. Сколько всего фотографий было подарено?

Решение найдётся легко, если начертить  граф:

 

 

 


1 способ. С помощью стрелок на рёбрах полного графа показан процесс обмена фотографиями. Очевидно, что стрелок в 2 раза больше, чем рёбер, т.е. 12.

2 способ. Каждый из 4 мальчиков подарил друзьям 3 фотографии, следовательно, всего было подарено 34=12 фотографий.

Ответ: 12 фотографий.

Задача № 3. Известно, что у каждой из трех девочек фамилия начинается с той же буквы, что и имя. У Ани фамилия Анисимова. У Кати фамилия не Карева, а у Киры – не Краснова. Какая фамилия у каждой из девочек?

Решение:По условию задачи составим граф, у которого вершины – имена и фамилии девочек. Сплошная линия будет обозначать, что девочке соответствует данная фамилия, а пунктирная – что не соответствует. Из условия задачи видно, что у Ани фамилия Анисимова (соединяем сплошной линией две соответствующие точки). Из этого следует, что у Кати и у Киры фамилия не Анисимова. Так как Катя – не Анисимова и не Карева, значит она Краснова. Остается, что у Киры фамилия Карева.                                              Ответ:  Аня Анисимова, Катя Краснова, Кира Карева.

Граф — это совокупность объектов со связями между ними. Объекты представляются как вершины, или узлы графа (они обозначаются точками), а связи — как дуги, или рёбра. Если связь однонаправленная обозначается на схеме линиями со стрелками, если связь между объектами двусторонняя обозначается на схеме линиями без стрелок. Основное направление работы с комбинаторными задачами – это переход от осуществления случайного перебора вариантов к проведению системного перебора. Задачи данного вида нагляднее решать при помощи графа.

Многие логические задачи легче решать при помощи графов. Графы позволяют наглядно представить условие задачи, а значит, значительно упростить её решение.

Задача № 4.Поступающий на физмат должен сдать три вступительных экзамена по десятибалльной системе. Сколькими способами он может сдать экзамены, чтобы быть принятым в университет, если проходной балл в тот год составил 28 баллов?

Решение. Для решения этой задачи, как и во многих других комбинаторных и вероятностных задачах, эффективным оказывается организация элементов анализируемого множества в виде дерева. От одной выделенной вершины проводятся ребра, соответствующие оценке на первом экзамене, а затем к их концам добавляются новые ребра, соответствующие возможным результатам второго экзамена, а затем и третьего.

 

 

 

 

 

 

 

 

 

 

 

Таким образом, для поступления на физмат можно сдать вступительные экзамены 10 различными способами.

Граф-дерево назван так  за внешнее сходство с деревом. С помощью графа-дерева подсчет вариантов гораздо легче производить. Также вычерчивать дерево вариантов полезно, когда требуется записать все существующие комбинации элементов.

Задача № 5. На одном далеком острове живут два племени: рыцарей (которые всегда говорят правду) и плутов (которые всегда лгут). Один мудрец-путешественник рассказал такую историю. «Приплыв на остров, я встретил двух местных жителей и захотел узнать, из какого они племени. Я спросил первого: «Вы оба рыцари?».  Не помню, ответил он «да» или «нет», но по его ответу я не смог однозначно определить кто из них кто. Тогда я спросил у того же жителя: «Вы из одного племени?». Опять-таки, не помню, ответил он «да» или «нет», но после этого ответа я сразу догадался, кто из них кто». Кого же встретил мудрец?

 

Овал: ПОвал: РОвал: ПОвал: ПРешение:

Надпись: 1
Надпись: 2
 

 

 

 

 

 

 

 


Ответ: первый ответ - "да", второй ответ - "нет"  -   мудрец встретил двух плутов.

 

 

 

 

 

 

 

 

Заключение. Приложение   теории    графов    в   различных  областях  науки и техники.

Инженер чертит схемы электрических цепей.

 Химик рисует структурные формулы, чтобы показать, как в сложной молекуле с помощью валентных связей соединяются друг с другом атомы. Историк прослеживает родословные связи по генеалогическому дереву. Военачальник наносит на карту сеть коммуникаций, по которым из тыла к передовым частям доставляется подкрепление.

 Социолог по сложнейшей диаграмме показывает, как подчиняются друг другу различные отделы одной огромной корпораций.

Что общего во всех этих примерах? В каждом из них фигурирует   граф.

 На языке теории графов формируются и решаются многие технические задачи, задачи из области экономики, социологии, менеджмента и т.д. Графы используются для наглядного представления объектов и связи между ними

 К теории графов также относится целый ряд математических проблем, не решенных на сегодняшний день.

 

 

 

 

 

 

 

 

 

 

 

 

 

Литература.

1.     «Энциклопедия для детей.  Т.11.  Математика»  /Глав.ред. М.Д.Аксёнова/ Издательский центр «Аванта+», 1998.

2.     «За страницами учебника математики»   Сост.  С. А. Литвинова. -2-е изд., дополненное. – М.:Глобус,  Волгоград: Панорама, 2008.

3.     Графы // Квант. -1994.- № 6.

4.     Математические головоломки и развлечения. М. Гарднер. – М.: «Мир», 1971.

5.     Зыков А.А. Основы теории графов           М.: Вузовская книга, 2004.

6.     Мельников О.И. Занимательные задачи по теории графов Издательство: ТетраСистемс, 2001.

7.     Берж К. Теория графов и ее приложения. М.: ИЛ, 1962. 

8.     Материалы  из Википедии — свободной энциклопедии.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Проектно исследовательская работа "Теория графов""

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Агроном

Получите профессию

Фитнес-тренер

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Краткое описание документа:

Проектно-исследовательская работа "Теория графов" была выполнена ученицей 9 класса Натаровой Валерией. Работа была представлена на ученической конференции "Юность, творчество, поиск, успех". Графы используют во всех отраслях нашей жизни. Знание основ теории графов необходимо в различных областях, связанных с управлением производством, бизнесом (например, сетевой график строительства, графики доставки почты), построении путей транспортировки и доставки, решении задач. Графы используют в связи с развитием теории вероятностей, математической логики и информационных технологий. 

 

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 655 741 материал в базе

Скачать материал

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 09.02.2015 7921
    • DOCX 1.1 мбайт
    • 81 скачивание
    • Оцените материал:
  • Настоящий материал опубликован пользователем Корыпаева Антонина Юрьевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Корыпаева Антонина Юрьевна
    Корыпаева Антонина Юрьевна
    • На сайте: 9 лет и 2 месяца
    • Подписчики: 0
    • Всего просмотров: 31478
    • Всего материалов: 17

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Бухгалтер

Бухгалтер

500/1000 ч.

Подать заявку О курсе
  • Сейчас обучается 20 человек из 14 регионов

Курс повышения квалификации

Ментальная арифметика: отрицательные числа, дроби, возведение в квадрат, извлечение квадратного корня

36 ч. — 144 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 113 человек из 42 регионов
  • Этот курс уже прошли 121 человек

Курс повышения квалификации

Методические и практические аспекты развития пространственного мышления школьников на уроках математики

36 ч. — 144 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 44 человека из 27 регионов
  • Этот курс уже прошли 124 человека

Курс повышения квалификации

Методика преподавания математики в среднем профессиональном образовании в условиях реализации ФГОС СПО

36 ч. — 144 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 68 человек из 37 регионов
  • Этот курс уже прошли 520 человек

Мини-курс

Продвижение экспертной деятельности: от личного сайта до личного помощника

6 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Психосемантика и социальная психология

5 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 30 человек из 17 регионов
  • Этот курс уже прошли 12 человек

Мини-курс

Психология личности: свойства и характеристики личности

5 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 59 человек из 27 регионов