Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Программа по математике 5-6 класс И.И.Зубарева, А.Г.Мордкович (ФГОС)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Математика

Программа по математике 5-6 класс И.И.Зубарева, А.Г.Мордкович (ФГОС)

библиотека
материалов

Муниципальное общеобразовательное учреждение «Княжегорская СОШ»


«Рассмотрено»

Руководитель МО



___________О.В.Милюхина


Протокол № ___ от

«____»__________2015 г.


«Согласовано»

Заместитель директора по УР МБОУ «Княжегорская СОШ»


_____________ Т.Н.Пронина



«____»____________2015 г.


«Утверждаю»

И.о.директора МБОУ

«Княжегорская СОШ»


___________ М.В.Павлова


Приказ№____от «_____»__________2015г.









РАБОЧАЯ ПРОГРАММА


по учебному курсу «Математика» 5-6 класс





Учитель: Абраменко В.А.

















2015-2016 уч.год





Пояснительная записка.



Программа адресована учащимся 5-6 классов МБОУ «Княжегорская СОШ» Зубцовского района.


Сроки реализации программы: 2015-2017 учебный год.


Математика является одним из основных, системообразующих предметов школьного образования. Такое место математики среди школьных предметов обусловливает и её особую роль с точки зрения всестороннего развития личности учащихся.

В основу настоящей программы положены педагогические и дидактические принципы (личностно ориентированные; культурно - ориентированные; деятельностно - ориентированные и т.д.) вариативного развивающего образования, и современные дидактико-психологические тенденции, связанные с вариативным развивающим образованием и требованиями ФГОС.

Личностно ориентированные принципы: принцип адаптивности; принцип развития; принцип комфортности процесса обучения.

Культурно - ориентированные принципы: принцип целостной картины мира; принцип целостности содержания образования; принцип систематичности; принцип смыслового отношения к миру; принцип ориентировочной функции знаний; принцип опоры на культуру как мировоззрение и как культурный стереотип.

Деятельностно - ориентированные принципы: принцип обучения деятельности; принцип управляемого перехода от деятельности в учебной ситуации к деятельности в жизненной ситуации; принцип перехода от совместной учебно-познавательной деятельности к самостоятельной деятельности учащегося (зона ближайшего развития); принцип опоры на процессы спонтанного развития; принцип формирования потребности в творчестве и умений творчества.

Программа задает перечень вопросов, которые подлежат обязательному изучению в основной школе.Она так же является логическим продолжением курса математики начальной школы (принцип преемственности). В основе курса лежит авторская идея А.Г.Мордковича; программа позволяет обеспечивать формирование как предметных умений, так и универсальных учебных действий школьников;

программа позволяет обеспечивать достижение целей в направлении личностного развития, в метапредметном направлении и предметном направлении.


Целью изучения курса математики в 5-6 классах является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии. Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают представление об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур.

Содержание программы:

С учетом требований Федерального государственного образовательного стандарта основного общего образования в содержании рабочей программы предполагается реализовать актуальные в настоящее время компетентностный, личностно ориентированный, деятельностный подходы.

Курс математики 5—6 классов включает следующие основные содержательные линии: арифметика; элементы алгебры; вероятность и статистика; наглядная геометрия. Наряду с этим в содержание включены две дополнительные методологические темы: множества и математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждой из этих тем разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия — «Множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая — «Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса.

Содержание линии «Арифметика» служит фундаментом для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию не только вычислительных навыков, но и логического мышления, формированию умения пользоваться алгоритмами, способствует развитию умений планировать и осуществлять деятельность, направленную на решение задач, а также приобретению практических навыков, необходимых в повседневной жизни.

Содержание линии «Элементы алгебры» систематизирует знания о математическом языке, показывая применение букв для обозначения чисел и записи свойств арифметических действий, а также для нахождения неизвестных компонентов арифметических действий.

Содержание линии «Наглядная геометрия» способствует формированию у учащихся первичных представлений о геометрических абстракциях реального мира, закладывает основы формирования правильной геометрической речи, развивает образное мышление и пространственные представления.

Линия «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности — умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся выделять комбинации, отвечающие заданным условиям, осуществлять перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.


Предполагаемые результаты в процессе освоения курса «Математика» 5-6 классов

  • первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  • умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;

  • умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.



  1. 2. Общая характеристика учебного предмета

Рабочая программа по математике 5-6 классов общеобразовательной школы создана на основе:

фундаментального ядра содержания общего образования;

Федерального государственного образовательного стандарта основного общего образования и требований к результатам освоения основной общеобразовательной программы основного общего образования;

примерной программе основного общего образования по математике;

авторской программы Зубарева И.И., Борткевич Л.К. Примерная рабочая программа изучения курса математики 5-6 классов при работе по учебникам «Математика, 5 класс «Математика, 6 класс» авторов И.И. Зубаревой, А.Г.Мордковича. – М.: Мнемозина, 2014;

учебного плана МБОУ « Княжегорская СОШ» на 2015- 2016 учебный год;

год календарного графика МБОУ « Княжегорская СОШ» на 2015-2016 учебный год


Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

При изучении математики в 5 классе продолжаются и получают развитие содержательные линии: «Числа и вычисления», «Выражения и их преобразования», «Уравнения и неравенства», «Геометрические фигуры», «Элементы комбинаторики и теории вероятностей». В рамках указанных содержательных линий решаются следующие задачи:

  • развитие представлений о числе и роли вычислений в человеческой практике; формирование практических навыков выполнения устных, письменных, инструментальных вычислений, развитие вычислительной культуры;

  • приобретение математических знаний и умений;

  • овладение обобщенными способами мыслительной, творческой деятельности;

  • освоение компетенций (учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, информационно-технологической, ценностно-смысловой).

  • формирование представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Основой построения курса математики 5 и 6 классов являются идеи и принципы развивающего обучения, сформулированные российскими педагогами и психологами Л.С. Выготским, Л.В. Занковым и другими. Суть основного принципа развивающего обучения - принципа ведущей роли теоретических знаний, - состоит в осознанном усвоении теоретических знаний учащимися, а потому его реализация заключается, прежде всего в том, что ученик, выполняя упражнения в определенной последовательности, получает возможность самостоятельно сформулировать правило, дать определение нового или уже знакомого понятия или даже ввести новый термин.

Предлагаемая программа практически не меняет перечень вопросов, традиционно изучаемых в 5-6-м классах. Главное отличие состоит во временном сдвиге начала изучения обыкновенных дробей и включении некоторых тем, традиционно изучавшихся в 6-м классе, в курс 5-го класса: основное свойство дроби; простейшие случаи сложения и вычитания дробей с разными знаменателями. 3десь при изложении материала большое внимание уделено наглядности: многие свойства и действия с обыкновенными дробями иллюстрируются красочными рисунками. Но значительная часть материала на этом этапе усваивается учащимися только на уровне представлений, а затем в процессе повторения доводится до уровня знаний и умений.

Что касается геометрического материала, то здесь отличия от традиционных программ более существенные. В дальнейшем, при изучении систематического курса геометрии, накопленные на данном этапе эмпирические представления, получат свое обобщение и развитие.

Учитывая возрастание роли статистических и вероятностных подходов к решению широкого круга проблем на современном этапе развития общества и неизбежное включение в программу общеобразовательной школы новой содержательно-методической линии «Анализ данных», в курсе математики 5-6-го классов начинают формироваться некоторые представления комбинаторики, теории вероятностей и статистики.

И наконец, в соответствии с требованиями времени уже в курсе математики 5-го класса используются такие термины, как «математический язык», «математическая модель», которые находят свое развитие в 6-м классе. Эти понятия позволяют начать формирование того идейного стержня, благодаря которому математика предстает перед учащимися не как набор разрозненных фактов, которые учитель излагает только потому, что они есть в программе, а как цельная развивающаяся и в то же время развивающая дисциплина общекультурного характера.


3. Описание места курса «Математика» в учебном плане

Учебный предмет «Математика» относится к образовательной области «Математика и Информатика»

Базисный учебный (образовательный) план на изучение математики в 5—6 классах основной школы отводит 5 часов в неделю в течение каждого года обучения, всего 170 уроков.



  1. Описание ценностных ориентиров содержания учебного предмета

Конкретные математические знания помогают понимать принципы устройства и использования техники, восприятие социальной,экономической, политической информации. Расчеты, применение нужных формул, геометрические измерения, чтение информации в виде таблиц и диаграмм помогают в жизненных ситуациях.

Базовая математическая подготовка дает возможность стать образованным современным человеком, получить более высокий уровень образования в областях, связанных с применением математики (физика, химия, техника, финансы, информатика, биология и т.д.)

Для жизни важным является формирование математического стиля мышления. Ведущая роль принадлежит математике в формировании алгоритмического мышления, воспитанию действовать по заданному алгоритму и созданию новых алгоритмов.

Обучение математике дает возможность развивать точную, экономическую, и информативную речь.

Математическое образование вносит вклад в формирование общей культуры человека, которое проявляется в знакомстве с методами познания действительности, представлениями о предмете и методах математики, его отличии от методов естественных и гуманитарных наук.

Изучение математики способствует эстетическому развитию человека, пониманию красоты и изяществу математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История математического развития дает возможность пополнить запас историко-научных знаний школьника. Знания об истории великих математических открытий, о великих людях, творивших науку должно войти в интеллектуальный багаж каждого культурного человека.

Достижение поставленных целей предусматривает решение следующих основных задач:

- обеспечение соответствия основной образовательной программы требованиям Стандарта

- обеспечение преемственности начального общего и основного общего образования;

- обеспечение доступности получения качественного основного общего образования;

-установление требований к воспитанию и социализации обучающихся как части образовательной программы и соответствующему усилению воспитательного потенциала школы, организация специализированного психолого-педагогического сопровождения каждого обучающегося, формирование образовательного базиса, основанного не только на знаниях, но и на соответствующем культурном уровне развития личности, создание необходимых условий для её самореализации;

- обеспечение эффективных сочетаний урочных и внеурочных форм организации образовательного процесса, взаимодействия всех её участников;

- выявление и развитие способностей обучающихся, в том числе для одарённых детей;

- организация индивидуальных и творческих соревнований, проектной и учебно-исследовательской деятельности;

- сохранение и укрепление физического, психологического и социального здоровья обучающихся, обеспечение их безопасности.



5. Личностные, метапредметные, и предметные результаты освоения курса математики 5-6 классов

Построение курса математики 5-6 классов в учебниках «Математика, 5 класс», «Математика, 6 класс» авторов И.И.Зубаревой, А.Г. Мордковича основано на идеях и принципах системно-деятельностного подхода в обучении, разработанных российскими психологами и педагогами: Л.С. Выготским, А.Н. Леонтьевым, В.В. Давыдовым, П.Я. Гальпериным, Л.В. Занковым и др., и заложенных в основу Стандарта (ФГОС 2010 г.), что обеспечивает обучающимся:

- формирование готовности к саморазвитию и непрерывному образованию;

- активную учебно-познавательную деятельность;

- построение образовательного процесса с учетом индивидуальных возрастных, психологических и физиологических особенностей.

При системно-деятельностном подходе основными технологиями обучения являются проблемно-поисковая, исследовательская технологии. Именно они позволяют создать такое образовательное пространство, в котором ученик становится субъектом процесса обучения. Применение этих технологий при работе по УМК «ПРО» обеспечивается строгим соблюдением такого дидактического принципа, как принцип систематичности и последовательности изложения теоретического материала.

Изучение математики в 5-6 классах дает возможность обучающимся достичь следующих результатов в направлении личностного развития:

1) владение знаниями о важнейших этапах развития математики (изобретение десятичной нумерации, обыкновенных дробей, десятичных дробей, положительных и отрицательных чисел; происхождение геометрии из практических потребностей людей);

2) умение строить речевые конструкции с использованием изученной терминологии и символики (устные и письменные), понимать смысл поставленной задачи, выстраивать аргументацию, выполнять перевод с естественного языка на математический и наоборот;

3) стремление к критичности мышления, распознаванию логически некорректного высказывания, различению гипотезы и факта;

4) стремление к самоконтролю процесса и результата учебной математической деятельности;

5) способность к эмоциональному восприятию математических понятий, логических рассуждений, способов решения задач, рассматриваемых проблем;

в метапредметном направлении:

1) сформированности первоначальных представлений о математике как универсальном языке науки и техники, средстве моделирования явлений и процессов;

2) умения понимать и использовать математические средства наглядности (схемы, таблицы, диаграммы, графики) для иллюстрации содержания сюжетной задачи или интерпретации информации статистического плана;

3) способности наблюдать, сопоставлять факты, выполнять аналитико-синтетическую деятельность, умение выдвигать гипотезы при решении учебно-познавательных задач, понимать необходимость их проверки, обоснования;

4) умения выстраивать цепочку несложных доказательных рассуждений, опираясь на изученные понятия и их свойства;

5) способности разрабатывать простейшие алгоритмы на материале выполнения действий с натуральными числами, обыкновенными и десятичными дробями, положительными и отрицательными числами;

6) понимания необходимости применять приемы самоконтроля при решении математических задач;

7) стремления продуктивно организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

8) сформированности основы учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

9) способности видеть математическую задачу в других дисциплинах, в окружающей жизни (простейшие ситуации);

в предметном направлении:

1) умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;

2) владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, луч, угол, многоугольник, многогранник, круг, окружность, шар, сфера, цилиндр, конус), о достоверных, невозможных и случайных событиях;

3) овладения практически значимыми математическими умениями и навыками, их применением к решению математических и нематематических задач, предполагающее умение:

- выполнять устные, письменные, инструментальные вычисления;

- выполнять алгебраические преобразования для упрощения простейших буквенных выражений;

- использовать геометрический язык для описания предметов окружающего мира;

- измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей, объемов геометрических фигур; пользоваться формулами площади, объема, пути для вычисления значений неизвестной величины;

- решать простейшие линейные уравнения.


Реализация требований к метапредметным результатам освоения основной образовательной программы основного общего образования

Достижение метапредметных результатов обеспечивается через методический аппарат учебников и учебно-методических пособий комплекта.

Методический аппарат учебника выстроен в соответствии с требованиями психологической теории деятельности, т.е. в его основу положен принцип предметной деятельности учащихся в обучении.

Так, введение нового материала в учебниках начинается с учебно-познавательных заданий (в учебнике обозначены буквой «У»), направленных на самостоятельное, или с минимальной помощью учителя, добывание новых теоретических знаний. Эти задания представляют собой систему, и их выполнение дает учащимся возможность самостоятельно сформулировать некоторое правило (например, 5 класс § 21. Основное свойство дроби) высказать гипотезу, которая в последующем может быть обоснована с помощью логических рассуждений (например, 6 класс, § 26. Делимость произведения) или опровергнута (например, 5 класс, § 51. Развертка Прямоугольного параллелепипеда, стр. 236-237). Организация работы по выполнению этих заданий обеспечивает:

- формирование у учащихся познавательных универсальных учебных действий (УУД), связанных с исследовательской деятельностью, таких как наблюдение, сравнение, сопоставление, эксперимент, установление аналогий, классификация, установление причинно-следственных связей;

- формирование коммуникативных УУД, таких как умение участвовать в дискуссиях, сознательно ориентироваться на позиции других людей (прежде всего, партнера по общению или деятельности), умение слушать и вступать в диалог, участвовать в коллективном обсуждении проблем, интегрироваться в группу сверстников и строить продуктивное взаимодействие и сотрудничество со сверстниками и взрослыми.

Среди заданий такого характера имеются задания, цель которых – формирование умений давать определения понятиям. Это, например, задание № 73 из § 4. Отрезок. Луч. (5 класс), или задание на стр. 135 к рисунку 86 из § 27.Определение угла. Развернутый угол. (5 класс).

Формирование умения построения умозаключений осуществляется на протяжении всего курса обучения математике: при анализе условия в ходе решения текстовых задач, при решении задач на применение правил или формул и т.д. Формирование убежденности в необходимости проведения доказательных рассуждений реализовывается как на алгебраическом, так и на геометрическом материале, например, § 36. Серединный перпендикуляр, § 51. Развертка прямоугольного параллелепипеда (5 класс), § 5.Параллельные прямые (6 класс).

Формулировки вопросов и заданий способствуют созданию благоприятных условий для развития устной и письменной речи учащихся, их способностей грамотно излагать свои мысли. Например, при введении понятия степени числа (§ 44, 5 класс) учащимся предлагается проанализировать содержание двух таблиц, сравнить их и объяснить, как связаны левый и правый столбцы каждой таблицы. Такая работа способствует не только развитию речи, но и формированию коммуникативных способностей учащихся, таких как умение слушать другого человека, понимать его, вникать в обоснование его точки зрения на тот или иной факт.

Наличие в УМК системы разноуровневых заданий (4 уровня), снабженной специальной системой обозначений, способствует формированию регулятивных УУД, таких как целеполагание, самостоятельное планирование осуществления учебной деятельности и обеспечивает учащимся возможность выбора индивидуальной траектории обучения. Заметим, что система заданий сборников задач и упражнений (см. стр. 45 п. 2, п. 14), система заданий рабочих тетрадей (см. стр. 45 п. 4, 5, 16, 17) также дифференцированы по уровню сложности. Этому же требованию отвечают и задания тематических контрольных работ (см. стр. 45 п. 7, 19). Для учащихся, проявляющих повышенный интерес к изучению математики, а также с целью формирования интереса к изучению математики у всех школьников, разработаны пособия для организации занятий математического кружка в 5-х и в 6-х классах.

В конце каждого параграфа учебников имеется рубрика «Контрольные вопросы и задания», цель которой – дать ориентир учащемуся в плане освоения материала на минимальном уровне, достаточном для изучения последующих тем.

В конце учебника приводятся «Домашние контрольные работы». Они ориентируют ученика на более высокий уровень достижений, соответствующий получению оценок «4» и «5».

Формирование и развитие компетентности в области использования информационно-коммуникационных технологий обеспечивается следующим:

1) наличием мультимедийных приложений к учебникам на компакт-диске (диски для ученика);

2) в учебнике «Математика, 6 класс» наличием заданий, для выполнения которых требуется использование программы Microsoft Excel (§34. Диаграммы);

3) наличием заданий для осуществления проектной деятельности учащихся.


Реализация требований к личностным результатам освоения

основной образовательной программы основного общего образования


Обеспечение всех требований ФГОС только средствами учебника математики в 5-6 классах труднодостижимо, поэтому мы предлагаем рассмотреть в этом плане роль других компонентов учебно-методического комплекта.

Так, обеспечение возможностей учащихся контролировать и оценивать процесс и результаты своей деятельности реализуется наличием в мультимедийных приложениях к учебникам (дисках для учителя, стр. 46, п. 12, 24) заданий с ответами и решениями. В ходе урока учащимся предоставляется возможность сравнить свое решение с эталоном, представленным на экране, и проанализировать характер допущенной ошибки (если таковая имеется).

Экологическое мышление формируется в ходе решения задач, сюжет или данные которых связаны с проблемами экологии на земле, например, задачи № 18, 417, 418 из пособия «Сборник задач и упражнений по математике. 5 класс».

Формированию ценностно-смысловых установок обучающихся, отражающих их личностные позиции, социальные компетенции, основы гражданской идентичности способствуют материалы для организации уроков итогового повторения в форме игры-путешествия (мультимедийное приложение на диске для учителя). Например:

1. Тема «Натуральные числа», 5 класс, игра «В далеком космосе». На Планету Чисел напали инопланетные завоеватели, после чего ее жители обратились за помощью к Землянам. Класс делится на 4 команды-экипажа, которые отправляются в далекое путешествие. Детям предлагаются задачи в соответствии с той или иной ситуацией. В конечном итоге восстанавливается справедливость, и Планета Чисел освобождается от завоевателей.

2. Тема «Положительные и отрицательные числа», 6 класс, игра «Путешествие на Остров Сокровищ». В ходе путешествия дети участвуют в спасении различных персонажей, попавших в затруднительные ситуации, а по прибытии на Остров Сокровищ находят истинные сокровища, такие как дружба, взаимопомощь, честность, верность, милосердие.

3. Тема «Буквенные выражения. Пропорции. Проценты», 6 класс, игра «Путешествие по Карельскому перешейку». В ходе путешествия учащиеся знакомятся с историческими местами, связанными с различными событиями, имевшими большое значение в истории нашей страны.


Требования к результатам обучения учащихся

5-й класс

Использовать при решении математических задач, их обосновании и проверке найденного решения знание:

  • названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);

  • как образуется каждая следующая счётная единица;

  • названия и последовательность разрядов в записи числа;

  • названия и последовательность первых трёх классов;

  • сколько разрядов содержится в каждом классе;

  • соотношение между разрядами;

  • сколько единиц каждого класса содержится в записи числа;

  • как устроена позиционная десятичная система счисления;

  • единицы измерения величин (длина, масса, время, площадь), соотношения между ними;

  • функциональной связи между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа).

  • Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;

  • выполнять умножение и деление с 1 000;

  • вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;

  • раскладывать натуральное число на простые множители;

  • находить наибольший общий делитель и наименьшее общее кратное нескольких чисел;

  • решать простые и составные текстовые задачи;

  • выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;

  • находить вероятности простейших случайных событий;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;

  • читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;

  • строить простейшие линейные, столбчатые и круговые диаграммы;

  • - находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • - создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

6-й класс

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • десятичных дробях и правилах действий с ними;

  • отношениях и пропорциях; основном свойстве пропорции;

  • прямой и обратной пропорциональных зависимостях и их свойствах;

  • процентах;

  • целых и дробных отрицательных числах; рациональных числах;

  • правиле сравнения рациональных чисел;

  • правилах выполнения операций над рациональными числами; свойствах операций.

  • Сравнивать десятичные дроби;

  • выполнять операции над десятичными дробями;

  • преобразовывать десятичную дробь в обыкновенную и наоборот;

  • округлять целые числа и десятичные дроби;

  • находить приближённые значения величин с недостатком и избытком;

  • выполнять приближённые вычисления и оценку числового выражения;

  • делить число в данном отношении;

  • находить неизвестный член пропорции;

  • находить данное количество процентов от числа и число по известному количеству процентов от него;

  • находить, сколько процентов одно число составляет от другого;

  • увеличивать и уменьшать число на данное количество процентов;

  • решать текстовые задачи на отношения, пропорции и проценты;

  • сравнивать два рациональных числа;

  • выполнять операции над рациональными числами, использовать свойства операций для упрощения вычислений;

  • решать комбинаторные задачи с помощью правила умножения;

  • находить вероятности простейших случайных событий;

  • решать простейшие задачи на осевую и центральную симметрию;

  • решать простейшие задачи на разрезание и составление геометрических фигур;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.



6. Содержание программы предмета «Математика» 5класс (170 в год)

АРИФМЕТИКА

Натуральные числа (27 ч). Десятичная система счисления. Римская нумерация. Арифметические действия над натуральными числами. Степень с натуральным показателем. Законы арифметических действий: переместительный, сочетательный, распределительный. Округление чисел. Прикидка и оценка результатов вычислений. Деление с остатком.

Дроби (60 ч). Обыкновенная дробь. Основное свойство дроби. Сравнение дробей. Арифметические действия с обыкновенными дробями: сложение и вычитание дробей с одинаковыми и с разными знаменателями (простейшие случаи), умножение и деление обыкновенной дроби на натуральное число. Нахождение части от целого и целого по его части в два приема.

Десятичная дробь. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

Текстовые задачи (24 ч). Решение текстовых задач арифметическим способом. Математические модели реальных ситуаций (подготовка учащихся к решению задач алгебраическим методом).

Измерения, приближения, оценки (8 ч). Единицы измерения длины, площади, объема, массы, времени, скорости. Размеры объектов окружающего нас мира (от элементарных частиц до Вселенной), длительность процессов в окружающем нас мире.

Представление зависимости между величинами в виде формул.

Проценты (7 ч). Нахождение процента от величины, величины по ее проценту.


НАЧАЛЬНЫЕ СВЕДЕНИЯ КУРСА АЛГЕБРЫ

Алгебраические выражения (11 ч). Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Упрощение выражений (простейшие случаи приведения подобных слагаемых).

Уравнение. Корень уравнения. Решение уравнений методом отыскания неизвестного компонента действия (простейшие случаи)

Координаты (2 ч). Координатный луч. Изображение чисел точками координатного луча.


НАЧАЛЬНЫЕ ПОНЯТИЯ И ФАКТЫ КУРСА ГЕОМЕТРИИ

Геометрические фигуры и тела. Равенство в геометрии. (18 ч)

Точка, прямая и плоскость. Расстояние. Отрезок, луч. Ломаная.

Прямоугольник. Окружность и круг. Центр, радиус, диаметр. Угол. Прямой угол. Острые и тупые углы. Развернутый угол. Биссектриса угла. Свойство биссектрисы угла.

Треугольник. Виды треугольников. Сумма углов треугольника.

Перпендикулярность прямых. Серединный перпендикуляр. Свойство серединного перпендикуляра к отрезку.

Наглядные представления о пространственных телах: кубе, параллелепипеде, призме, пирамиде, шаре, сфере, конусе, цилиндре. Развертка прямоугольного параллелепипеда.

Измерение геометрических величин. (9 ч)

Длина отрезка. Длина ломаной, периметр треугольника, прямоугольника.

Расстояние между двумя точками. Масштаб. Расстояние от точки до прямой.

Величина угла. Градусная мера угла.

Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры.

Периметр и площадь прямоугольника. Площадь прямоугольного треугольника, площадь произвольного треугольника.

Объем тела. Формулы объема прямоугольного параллелепипеда, куба.


ВЕРОЯТНОСТЬ (НАЧАЛЬНЫЕ СВЕДЕНИЯ)

Достоверные, невозможные и случайные события. Перебор вариантов, дерево вариантов (4 ч).


Содержание программы предмета «Математика» 6класс (170 ч в год)


АРИФМЕТИКА

Рациональные числа (40 ч). Целые числа: положительные, отрицательные и нуль. Модуль (абсолютная величина) числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами.

Числовые выражения, порядок действий в них, использование скобок. Законы арифметических действий: переместительный, сочетательный, распределительный.

Проценты. Нахождение процента от величины, величины по ее проценту, процентного отношения. Задачи с разными процентными базами.

Отношение, выражение отношения в процентах. Пропорция. Пропорциональные и обратно пропорциональные величины.

Натуральные числа (20 ч).

Делимость натуральных чисел. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Наибольший общий делитель и наименьшее общее кратное.

Дроби (40 ч).

Арифметические действия с обыкновенными дробями: сложение и вычитание дробей с разными знаменателями (случаи, требующие применения алгоритма отыскания НОК), умножение и деление обыкновенных дробей. Нахождение части от целого и целого по его части в один прием.


НАЧАЛЬНЫЕ СВЕДЕНИЯ КУРСА АЛГЕБРЫ

Алгебраические выражения. Уравнения (44 ч). Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Равенство буквенных выражений. Упрощение выражений, раскрытие скобок (простейшие случаи). Алгоритм решения уравнения переносом слагаемых из одной части уравнения в другую.

Решение текстовых задач алгебраическим методом (выделение трех этапов математического моделирования).

Отношения. Пропорциональность величин.

Координаты (8 ч). Координатная прямая. Изображение чисел точками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.

Декартовы координаты на плоскости; координаты точки.


НАЧАЛЬНЫЕ ПОНЯТИЯ И ФАКТЫ КУРСА ГЕОМЕТРИИ

Геометрические фигуры и тела, симметрия на плоскости (12 ч). Центральная и осевая симметрия. Параллельность прямых. Окружность и круг. Число . Длина окружности. Площадь круга.

Наглядные представления о шаре, сфере. Формулы площади сферы и объема шара.


ВЕРОЯТНОСТЬ (НАЧАЛЬНЫЕ СВЕДЕНИЯ)

Первые представления о вероятности (6 ч). Первое представление о понятии «вероятность». Число всех возможных исходов, правило произведения. Благоприятные и неблагоприятные исходы. Подсчет вероятности наступления или не наступления события в простейших случаях.


  1. Контроль предметных результатов


Рекомендации по оценке знаний, умений и навыков учащихся по математике.

Опираясь на эти рекомендации, учитель оценивает знания, умения и навыки учащихся с учетом их индивидуальных особенностей.

  1. Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.

  2. Основными формами проверки знаний и умений, учащихся по математике являются письменная контрольная работа и устный опрос.

  3. Среди погрешностей выделяются ошибки и недочеты.

Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, указанными в программе. К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, которые в программе не считаются основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения: неаккуратная запись, небрежное выполнение чертежа.

  1. Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.

Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.

Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно, выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.

  1. Оценка ответа учащихся при устном и письменном опросе производится по пятибалльной системе.

  2. Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося, за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им задания.

  3. Итоговые отметки (за тему, четверть, курс) выставляются по состоянию знаний на конец этапа обучения с учетом текущих отметок.


Система контроля складывается из следующих компонентов:

  1. Математические диктанты. В математических диктантах оцениваются не только знания ученика, но и умение его работать на слух и за ограниченное время. Оценки выставляются на усмотрение учителя и ученика.

  2. Тесты предложены двух видов: на установление истинности утверждений и на выбор правильного ответа. Первые проверяют умение пятиклассников обосновывать или опровергать утверждения. Такие тесты позволяют акцентировать внимание школьников на формулировках определений, свойств, законов и др. математических предложений, а также развивают точность, логичность и строгость их математической речи. На их выполнение отводится от 3 до 5 минут.

Тесты второго вида (с выбором ответа из трех или четырех вариантов) проверяют владение устными вычислительными приемами, усвоение материала каждого пункта, в той последовательности, в которой он там представлен. Тесты содержат по 10 вопросов, их можно предлагать целиком или частями, в зависимости от объема пройденного материала к моменту проведения. На выполнение каждого задания теста отводится около 1 минуты.

  1. Самостоятельные работы содержат от 4 до 6 заданий и рассчитаны примерно на 15-20 минут. Оцениваются по желанию учащихся.

  2. Для итогового повторения составлены итоговые зачеты.

  3. Контрольные работы составлены по крупным блокам материала или главам учебника, есть итоговая контрольная работа. В каждой работе по 5-6 заданий, первые три из них соответствуют уровню обязательной подготовки, последние задания более продвинутые по уровню сложности. На выполнение контрольной работы отводится 40-45 минут.

Оценка устных ответов учащихся

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;

  • продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость использованных при ответе умений и навыков;

  • отвечал самостоятельно без наводящих вопросов учителя.

Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Ответ оценивается отметкой «4», если он удовлетворен в основном требованиям на отметку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившие математического содержания ответа, исправленные по замечанию учителя.

  • допущены ошибки или более двух недочетов при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.


Отметка «3» ставится в следующих случаях:

  • неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»).

  • имелись затруднения или допущены ошибки в определении понятий и, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при знании теоретического материала выявлена недостаточная сформированность умений и навыков.


Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.


Оценка письменных контрольных работ учащихся

Отметка «5» ставится в следующих случаях:

  • работа выполнена полностью.

  • в логических рассуждениях и обоснованиях нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала);

Отметка «4» ставится, если:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умения обосновывать рассуждения не являлись специальным объектом проверки);

  • допущена одна ошибка или два-три недочета в выкладках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки);

Отметка «3» ставится, если:

  • допущены более одной ошибки или более двух- трех недочетов в выкладках, чертежах или графика, но учащийся владеет обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями по данной теме в полной мере.


Тесты

  • «5» - 90-100%

  • «4» - 75-80%

  • «3» - 60-70%

  • «2» - 50% и менее.

Устно (по карточкам)

  • «5» - правильные ответы на все вопросы.

  • «4» - на основной вопрос ответ верный, но на дополнительные не ответил или допустил ошибку.

  • «3» - затруднился, дал не полный ответ, отвечал на дополнительные вопросы.

  • «2» - не знает ответ и на дополнительные вопросы отвечает с трудом.


  1. Учебно-методическое и материально-техническое обеспечение учебного предмета


Основная литература.

  1. Учебник: Математика. 5 класс. / И.И. Зубарева, А.Г. Мордкович/ М. Мнемозина, 2015

  2. Методическое пособие для учителя «Математика 5 – 6 класс» / И.И. Зубарева, А, Г. Мордкович/ М. Мнемозина, 2015

Дополнительная литература:

  1. Математика. Мультимедийные пособия. /В. Г. Гамбарин, И. И. Зубарева, М. С. Мильштейн.

  2. «Математика». Еженедельное учебно-методическое приложение к газете «Первое сентября»;

  3. Научно-теоретический и методический журнал. «Математика в школе».

  4. «Занимательные задания в обучении математикой» /М. Ю. Шуба

  5. Самостоятельные работы «Математика 5 класс»/ И.И. Зубарева, М.С. Мальштейн, М.Н. Шанцева/ М. Мнемозина, 2015

  6. Самостоятельные работы «Математика 6 класс»/ И.И. Зубарева, М.С. Мальштейн, М.Н. Шанцева/ М. Мнемозина, 2015

  7. Блиц – опрос «Математика 5», / Е.Е. Тульчинская/ М. Мнемозина, 2015

  8. Блиц – опрос «Математика 6», / Е.Е. Тульчинская/ М. Мнемозина, 2015

  9. Самостоятельные и контрольные работы по математике 5 класс / А.П. Ершова, В.В. Голобородько /М. «Илекса», 2005

  10. Самостоятельные и контрольные работы по математике 6 класс / А.П. Ершова, В.В. Голобородько /М. «Илекса», 2005

  11. 5 – 6 класс. Тесты для промежуточной аттестации. / Ф.Ф. Лысенко / Ростов –на – Дону «Легион» 2008

  12. 20 тестов по математике 5-6 классы / С.С.Минаев /М. «Экзамен» 2007

  13. Программы. Математика.5-6 классы/авт.-сост. И.И. Зубарева, А.Г. Мордкович.- М.: Мнемозина, 2015

  14. **Математика. 5-6 классы: методическое пособие для учителя/ И.И. Зубарева, А.Г. Мордкович.- М.: Мнемозина, 2008

  15. Математика. 5-9 классы: развернутое тематическое планирование. Базовый уровень. Линия И.И.Зубаревой, А.Г. Мордковича/авт.-сост. Н.А. Ким.- Волгоград: Учитель, 2009

  16. Математика. ***Тесты. 5-6 классы: пособие для учащихся общеобразовательных учреждений/ Е.Е. Тульчинская. – М.: Мнемозина, 2007


Дополнительная литература для учащихся:

  • Математика.6 класс. *Самостоятельные работы для учащихся общеобразовательных учреждений/И.И. Зубарева, И.П. Лепешонкова, М.С. Мильштейн; под ред. И.И. Зубаревой.- М.: Мнемозина, 2009

  • Математика. Тесты. 5-6 классы: пособие для учащихся общеобразовательных учреждений/ Е.Е. Тульчинская. – М.: Мнемозина, 2007


Печатные пособия

  1. Демонстрационный материал в соответствии с основными темами программы обучения

  2. Карточки с заданиями по математике

  3. Портреты выдающихся деятелей математики

Учебно - практическое и учебно- лабораторное оборудование

  1. Комплект чертежных инструментов: линейка, транспортир, угольник, циркуль.

  2. Комплекты планиметрических и стереометрических тел.

Технические средства обучения:

  1. Компьютер

  2. Мультимедийный проектор

  3. Экран


Интернет-сайты для математиков

  • www.1september.ru

  • www.math.ru

  • www.allmath.ru

  • www.uztest.ru

  • http://schools.techno.ru/tech/index.html

  • http://www.catalog.alledu.ru/predmet/math/more2.html

  • http://methmath.chat.ru/index.html

  • http://www.mathnet.spb.ru/

  • Комплект цифровых образовательных ресурсов к учебнику «Математика. 5 класс» авторов И.И. Зубаревой, А.Г. Мордковича, включающий методические рекомендации по использованию. [Электронный ресурс] – учеб. пособие для общеобразоват. учреждений, 2008 http://school-collection.edu.ru/catalog/rubr/608887c4-68f4-410f-bbd4-618ad7929e22/?interface=pupil&class[]=47&subject[]=16/ И.И. Зубарева, М.С. Мильштейн, В.Г. Гамбарин, Е.Е. Тульчинская, Д.В.Немасов.

  • Комплект цифровых образовательных ресурсов к учебнику «Математика. 6 класс» авторов И.И. Зубаревой, А.Г. Мордковича, включающий методические рекомендации по использованию. [Электронный ресурс] – учеб. пособие для общеобразоват. учреждений, 2008 http://school-collection.edu.ru/catalog/rubr/608887c4-68f4-410f-bbd4-618ad7929e22/?interface=pupil&class[]=47&subject[]=16/ И.И. Зубарева, Мильштейн М.С., Гамбарин В.Г., Тульчинская Е.Е., Немасов Д.В.

  • УМЦ «Арсенал Образования», вебинары по вопросам методики обучения математике в 5-6 классах, http://www.ars-edu.ru/vebinary/webinary-provodimie-sovmestno-s-izdatelstvom-mnemozina.

  • Практика развивающего обучения. Сайт методической поддержки УМК «ПРО», www. ziimag.narod.ru.

  • ИОЦ Мнемозина. www.mnemozina.ru/


Автор
Дата добавления 21.03.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров409
Номер материала ДВ-542719
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх